priors on exchangeable directed graphs

Diana Cai
Department of Statistics
University of Chicago

Collaborators:
Nathanael Ackerman (Harvard)
Cameron Freer (Gamalon and MIT)
Overview

• We consider **exchangeable (dense) graphs**.

• Specifically, we are interested in **directed** graphs. However, most work has focused on undirected graphs.

• **Aldous–Hoover** has an analogous statement for directed graphs, which is more complicated than merely using an *asymmetric* function.

• Many natural nonparametric priors on exchangeable undirected graphs **extend to the directed case**.

• This perspective leads to natural priors on other exchangeable structures, such as **tournaments** and **directed acyclic graphs**.
Exchangeable graphs

exchangeability:

- order of vertices doesn’t affect distribution of graph

\[\Pr(\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}) = \Pr(\begin{array}{ccc}
3 & 2 & 1 \\
\end{array}) \]
Exchangeable graphs

<table>
<thead>
<tr>
<th>Undirected</th>
<th>Directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any exchangeable random infinite graph is obtained as a mixture of $G(\infty, W)$.</td>
<td></td>
</tr>
<tr>
<td>$G(\infty, W)$ is a sampling procedure from the graphon W.</td>
<td></td>
</tr>
<tr>
<td>$W : [0, 1]^2 \rightarrow [0, 1]$</td>
<td></td>
</tr>
<tr>
<td>$W(x, y) = W(y, x)$</td>
<td></td>
</tr>
<tr>
<td>Aldous–Hoover</td>
<td></td>
</tr>
</tbody>
</table>
Exchangeable graphs

Graphon:

\[W : [0, 1]^2 \rightarrow [0, 1] \]
\[W(x, y) = W(y, x) \]

\[W(x, y) = \frac{(1 - x) + (1 - y)}{2} \]
Exchangeable graphs

Graphon:

\[W : [0, 1]^2 \to [0, 1] \]

\[W(x, y) = W(y, x) \]

Sampling procedure:

\[U_i \sim \text{Uniform}[0, 1] \]

\[G_{ij} \sim \text{Bern}(W(U_i, U_j)), i < j \quad \text{(Set } G_{ji} = G_{ij}) \]
Exchangeable graphs

Graphon:

\[W : [0, 1]^2 \to [0, 1] \]
\[W(x, y) = W(y, x) \]

Sampling procedure:

\[U_i \sim \text{Uniform}[0, 1] \]
\[G_{ij} \sim \text{Bern}(W(U_i, U_j)), i < j \quad \text{(Set } G_{ji} = G_{ij}) \]
Exchangeable graphs

Graphon:

\[W : [0, 1]^2 \rightarrow [0, 1] \]

\[W(x, y) = W(y, x) \]

Sampling procedure:

\[U_i \sim \text{Uniform}[0, 1] \]

\[G_{ij} \sim \text{Bern}(W(U_i, U_j)), i < j \]
Exchangeable graphs

Graphon:

\[W : [0, 1]^2 \rightarrow [0, 1] \]

\[W(x, y) = W(y, x) \]

Sampling procedure:

\[U_i \sim \text{Uniform}[0, 1] \]

\[G_{ij} \sim \text{Bern}(W(U_i, U_j)), i < j \]
Exchangeable graphs

Graphon:

\[W : [0, 1]^2 \rightarrow [0, 1] \]
\[W(x, y) = W(y, x) \]

Sampling procedure:

\[U_i \sim \text{Uniform}[0, 1] \]
\[G_{ij} \sim \text{Bern}(W(U_i, U_j)), i < j \]
Exchangeable digraphs

Many results for exchangeable undirected graphs extend to directed graphs.
Exchangeable digraphs

Many results for exchangeable **undirected** graphs extend to **directed** graphs.

- order of vertices doesn’t affect distribution of graph

\[
\Pr(\begin{array}{ccc}
\text{1} & \text{2} & \text{3} \\
\end{array}) = \Pr(\begin{array}{ccc}
\text{1} & \text{2} & \text{3} \\
\end{array})
\]

[Cai–Ackerman–Freer, 2015]
Exchangeable graphs

<table>
<thead>
<tr>
<th>Undirected</th>
<th>Directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any exchangeable random infinite graph is obtained as a mixture of $\mathcal{G}(\infty, W)$.</td>
<td>Any exchangeable random infinite digraph is obtained as a mixture of $\mathcal{G}(\infty, W)$.</td>
</tr>
<tr>
<td>$\mathcal{G}(\infty, W)$ is a sampling procedure from the graphon W.</td>
<td>$\mathcal{G}(\infty, W)$ is a sampling procedure from the digraphon W.</td>
</tr>
<tr>
<td>$W : [0, 1]^2 \rightarrow [0, 1]$</td>
<td>$W = ?$</td>
</tr>
<tr>
<td>$W(x, y) = W(y, x)$</td>
<td>implicit in A–H; cf. Diaconis–Janson</td>
</tr>
</tbody>
</table>
Exchangeable digraphs

Can we just use a single asymmetric measurable function?
Exchangeable digraphs

Can we just use a single \textit{asymmetric measurable function}?

Yes, by independently choosing each edge direction.
Exchangeable digraphs

Can we just use a single asymmetric measurable function?

Yes, by independently choosing each edge direction.

But this does not cover all directed graphs:
Exchangeable digraphs

Can we just use a single \textbf{asymmetric measurable function}?

Yes, by independently choosing each edge direction.

But this does not cover \textit{all} directed graphs:

- \textbf{tournaments} (each pair of vertices has exactly one directed edge)
Exchangeable digraphs

Can we just use a single asymmetric measurable function?

Yes, by independently choosing each edge direction.

But this does not cover all directed graphs:

• **tournaments** (each pair of vertices has exactly one directed edge)

• **undirected** graphs (each pair has either both or no directed edges)
Digraph representation

\[W_{00} \quad W_{01} \quad W_{10} \quad W_{11} \quad w \]

- Digraphon: \(W = (W_{00}, W_{01}, W_{10}, W_{11}, w) \)

 \(W_{ab} : [0, 1]^2 \to [0, 1] \) and \(w : [0, 1] \to \{0, 1\} \) measurable functions

- For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),

 1. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a = b \)
 2. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a \neq b \)
 3. \(\sum_{a,b} W_{a,b}(x, y) = 1 \)
Digraph representation

\[
\begin{array}{cccc}
W_{00} & W_{01} & W_{10} & W_{11} \\
0 & 1 & 1 & 1 \\
1 & & & \\
\end{array}
\]

\[w\]
Digraph representation

\[W_{00} \quad W_{01} \quad W_{10} \quad W_{11} \quad w \]

\[
\begin{array}{ccc}
0 & 1 \\
1 & \quad & \quad
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad
\end{array}
\]

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad
\end{array}
\]
Digraph representation

\[W_{00} \quad W_{01} \quad W_{10} \quad W_{11} \quad w \]
Digraph representation

\[W_{00} \quad W_{01} \quad W_{10} \quad W_{11} \]

\[\begin{array}{ccc}
0 & 1 & \\
0 & & \\
1 & & \\
\end{array} \]

\[w \]

Digraph representation

\[W_{00}, W_{01}, W_{10}, W_{11} \]

\[w \]

\[
\begin{array}{c}
\begin{array}{c}
0 \\
1
\end{array}
\end{array}
\]
Digraph representation

• Digraphon: \(\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w) \)

\(W_{ab} : [0, 1]^2 \rightarrow [0, 1] \) and \(w : [0, 1] \rightarrow \{0, 1\} \) measurable functions

• For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),

1. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a = b \)

2. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a \neq b \)

3. \(\sum_{a, b} W_{a,b}(x, y) = 1 \)
Digraph representation

- Digraphon: $\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w)$

 $W_{ab} : [0, 1]^2 \rightarrow [0, 1]$ and $w : [0, 1] \rightarrow \{0, 1\}$ measurable functions

- For $a, b \in \{0, 1\}$ and $x, y \in [0, 1]$,

 1. $W_{ab}(x, y) = W_{ba}(y, x)$, when $a = b$

 2. $W_{ab}(x, y) = W_{ba}(y, x)$, when $a \neq b$

 3. $\sum_{a,b} W_{a,b}(x, y) = 1$
Digraph representation

- Digraphon: \(\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w) \)

- \(W_{ab} : [0, 1]^2 \rightarrow [0, 1] \) and \(w : [0, 1] \rightarrow \{0, 1\} \) measurable functions

- For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),
 1. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a = b \)
 2. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a \neq b \)
 3. \(\sum_{a,b} W_{a,b}(x, y) = 1 \)
Digraph representation

- Digraphon: \(\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w) \)

\(W_{ab} : [0, 1]^2 \rightarrow [0, 1] \) and \(w : [0, 1] \rightarrow \{0, 1\} \) measurable functions

- For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),
 1. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a = b \)
 2. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a \neq b \)
 3. \(\sum_{a,b} W_{a,b}(x, y) = 1 \)
Digraph representation

\[W = (W_{00}, W_{01}, W_{10}, W_{11}, w) \]

\[W_{ab} : [0, 1]^2 \rightarrow [0, 1] \text{ and } w : [0, 1] \rightarrow \{0, 1\} \text{ measurable functions} \]

- For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),
 1. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a = b \)
 2. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a \neq b \)
 3. \(\sum_{a,b} W_{a,b}(x, y) = 1 \)
Digraph representation

- Digraphon: \(\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w) \)

 \(W_{ab} : [0, 1]^2 \rightarrow [0, 1] \) and \(w : [0, 1] \rightarrow \{0, 1\} \) measurable functions

- For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),

 1. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a = b \)

 2. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a \neq b \)

 3. \(\sum_{a,b} W_{a,b}(x, y) = 1 \)
Digraph representation

- Digraphon: \(\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w) \)

 \(W_{ab} : [0, 1]^2 \to [0, 1] \) and \(w : [0, 1] \to \{0, 1\} \) measurable functions

- For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),
 \[
 1. \quad W_{ab}(x, y) = W_{ba}(y, x), \quad \text{when} \ a = b \\
 2. \quad W_{ab}(x, y) = W_{ba}(y, x), \quad \text{when} \ a \neq b \\
 3. \quad \sum_{a,b} W_{a,b}(x, y) = 1
 \]
Digraph representation

- Digraphon: \(\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w) \)

\(W_{ab} : [0, 1]^2 \rightarrow [0, 1] \) and \(w : [0, 1] \rightarrow \{0, 1\} \) measurable functions

- For \(a, b \in \{0, 1\} \) and \(x, y \in [0, 1] \),
 1. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a = b \)
 2. \(W_{ab}(x, y) = W_{ba}(y, x) \), when \(a \neq b \)
 3. \(\sum_{a,b} W_{a,b}(x, y) = 1 \)
Digraph representation

- Digraphon: $W = (W_{00}, W_{01}, W_{10}, W_{11}, w)$

 $W_{ab} : [0, 1]^2 \rightarrow [0, 1]$ and $w : [0, 1] \rightarrow \{0, 1\}$ measurable functions

- For $a, b \in \{0, 1\}$ and $x, y \in [0, 1]$,
 1. $W_{ab}(x, y) = W_{ba}(y, x)$, when $a = b$
 2. $W_{ab}(x, y) = W_{ba}(y, x)$, when $a \neq b$
 3. $\sum_{a,b} W_{a,b}(x, y) = 1$
• Define $W_4(x, y) := (W_{00}(x, y), W_{01}(x, y), W_{10}(x, y), W_{11}(x, y))$

$U_i \sim \text{Uniform}[0, 1]$

$E_{ij} \sim \text{Categorical}(W_4(U_i, U_j)), \text{ for } i < j$

$G_{ij}, G_{ji} = \text{directed edge(s) corresponding to } E_{ij}, \text{ for } i < j$

$G_{ii} = w(U_i)$
Sampling procedure

- Define $W_4(x, y) := (W_{00}(x, y), W_{01}(x, y), W_{10}(x, y), W_{11}(x, y))$

\[U_i \sim \text{Uniform}[0, 1] \]

\[E_{ij} \sim \text{Categorical}(W_4(U_i, U_j)), \text{ for } i < j \]

\[G_{ij}, G_{ji} = \text{directed edge(s) corresponding to } E_{ij}, \text{ for } i < j \]

\[G_{ii} = w(U_i) \]
Sampling procedure

- Define $W_4(x, y) := (W_{00}(x, y), W_{01}(x, y), W_{10}(x, y), W_{11}(x, y))$

$U_i \sim \text{Uniform}[0, 1]$

$E_{ij} \sim \text{Categorical}(W_4(U_i, U_j)), \text{ for } i < j$

$G_{ij}, G_{ji} = \text{directed edge(s) corresponding to } E_{ij}, \text{ for } i < j$

$G_{ii} = w(U_i)$
Sampling procedure

- Define $W_4(x, y) := (W_{00}(x, y), W_{01}(x, y), W_{10}(x, y), W_{11}(x, y))$

 $U_i \sim \text{Uniform}[0, 1]$

 $E_{ij} \sim \text{Categorical}(W_4(U_i, U_j))$, for $i < j$

 $G_{ij}, G_{ji} =$ directed edge(s) corresponding to E_{ij}, for $i < j$

 $G_{ii} = w(U_i)$

priors on exchangeable directed graphs

[Cai–Ackerman–Freer, 2015]
Sampling procedure

• Define $W_4(x, y) := (W_{00}(x, y), W_{01}(x, y), W_{10}(x, y), W_{11}(x, y))$

$U_i \sim \text{Uniform}[0, 1]$

$E_{ij} \sim \text{Categorical}(W_4(U_i, U_j))$, for $i < j$

$G_{ij}, G_{ji} =$ directed edge(s) corresponding to E_{ij}, for $i < j$

$G_{ii} = w(U_i)$
Special cases

- Undirected graphs (graphon) (e.g., ER(½))

\[
W_{00} \quad W_{01} \quad W_{10} \quad W_{11}
\]

\[
W(x, y) = W(y, x)
\]

\[
W : [0, 1]^2 \to [0, 1]
\]
Special cases

• **Tournaments** (e.g., generic tournament)

\[
\begin{align*}
W_{00} & \quad W_{01} & \quad W_{10} & \quad W_{11} & \quad w \\
\end{align*}
\]

- W_{00} (empty graph)
- W_{01} (complete graph)
- W_{10} (complete graph)
- W_{11} (empty graph)
- w (any directed graph)
Special cases

• Linear ordering (the only one, by Glasner–Weiss)

\[W_{00} \quad W_{01} \quad W_{10} \quad W_{11} \quad w \]
Special cases

- Directed acyclic graphs (DAGs)

\[
\begin{align*}
W_{00} & \quad W_{01} & \quad W_{10} & \quad W_{11} & \quad w \\
\end{align*}
\]
Special cases

- Partial ordering (poset)

\[
W_{00} \quad W_{01} \quad W_{10} \quad W_{11} \quad w
\]
Priors on digraphons

- Can extend literature for graphon priors (cf. Orbanz–Roy) to directed graphs, e.g., infinite relational model

- Some of these models are already intended for directed graphs, via an *asymmetric* measurable function (to describe independent edge directions).

[Orbanz–Roy, 2015]
Directed block models

• In a block model, pairs of regions can vary in how tournament-like, as well as how dense they are:

• e.g., Directed stochastic block model [Wang–Wong, 1987]

Example of SBM digraphon, 0.7 division

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>W_{00}</code></td>
<td><code>W_{01}</code></td>
<td><code>W_{10}</code></td>
<td><code>W_{11}</code></td>
</tr>
</tbody>
</table>
Infinite digraph block model

1. Draw partition $\sim \text{DP-Stick}(\alpha)$
2. Get weights $\sim \text{Dirichlet}(a)$

$W_{00} \quad W_{01} \quad W_{10} \quad W_{11}$
Infinite digraph block model

1. Draw partition \sim DP-Stick(α)
Infinite digraph block model

1. Draw partition \sim DP-Stick(α)
2. Draw weights \sim Dirichlet(\mathbf{a})
Infinite digraph block model

1. Draw partition \sim DP-Stick(α)
2. Draw weights \sim Dirichlet(α)
Infinite digraph block model

Tournament

Dirichlet parameter $a = [0, 2, 1, 0]$

sample
Infinite digraph block model

Almost totally ordered

Dirichlet parameter $a = [0, 0, 1, 0]$

sample

reordered

[Cai–Ackerman–Freer, 2015]
Infinite digraph block model

Dirichlet parameter $a = [0.9, 2.0, 1.0, 0.5]$
Infinite digraph block model

- Inference via collapsed Gibbs sampling of cluster assignments
 \[p(z_i | z_{-i}, G) \propto p(z_i | z_{-i}) p(G | z_i, z_{-i}) \]
 - cluster assignment of vertex i
 - cluster assignments of all vertices except i

- Experiments using synthetic data
 Dirichlet parameter \(a = [1, 1, 1, 1] \)
Infinite digraph block model

- Random digraphon

- Random sample, 100 vertices

Dirichlet parameter $a = [1, 1, 1, 1]$
Infinite digraph block model

• Random digraphon

• Collapsed Gibbs sampling

Dirichlet parameter \(a = [1, 1, 1, 1] \)
Infinite digraph block model

• Random digraphon

\[\text{Dirichlet parameter } a = [1, 1, 1, 1] \]

• Collapsed Gibbs sampling

original ordering

resorted by increasing uniform random variables

resorted by inferred cluster

[Cai–Ackerman–Freer, 2015]
Infinite digraph block model

- Random digraphon: ER + tournament
Infinite digraph block model

- Schematic of the sampled digraph:

```
  1  2
1  1  1
2  2  2
```

- Diagram with groups 1 and 2:

```
  group 1  1/2  1/2  group 2
```

```
  1/2  or  1/2
```

[Cai–Ackerman–Freer, 2015]
Infinite digraph block model

- Random digraphon: ER + tournament

- Collapsed Gibbs sampling for this model

original ordering
resorted by increasing uniform random variables
resorted by inferred cluster
Infinite digraph block model

• Random digraphon: ER + tournament

• Collapsed Gibbs sampling for this model

original ordering

resorted by increasing uniform random variables

resorted by inferred cluster
Infinite digraph block model

• Random digraphon: ER + tournament

• Collapsed Gibbs sampling for the infinite relational model

original ordering
resorted by increasing uniform random variables
resorted by inferred cluster
Conclusions

• Summary

• Discussion:
 • other types of block models:
 • could consider other partitions, e.g., Pitman–Yor
 • other priors, e.g., Gaussian process (as in Lloyd et al.)
 • Aldous–Hoover already describes exchangeable hypergraphs
 • sparsity
References

