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Markov chain Monte Carlo (MCMC) is an established approach
for uncertainty quantification and propagation in scientific applica-
tions. A key challenge in applying MCMC to scientific domains is
computation: the target density of interest is often a function of ex-
pensive computations, such as a high-fidelity physical simulation, an
intractable integral, or a slowly-converging iterative algorithm. Thus,
using an MCMC algorithms with an expensive target density becomes
impractical, as these expensive computations need to be evaluated
at each iteration of the algorithm. In practice, these computations
often approximated via a cheaper, low-fidelity computation, leading to
bias in the resulting target density. Multi-fidelity MCMC algorithms
combine models of varying fidelities in order to obtain an approximate
target density with lower computational cost. In this paper, we de-
scribe a class of asymptotically exact multi-fidelity MCMC algorithms
for the setting where a sequence of models of increasing fidelity can
be computed that approximates the expensive target density of inter-
est. We take a pseudo-marginal MCMC approach for multi-fidelity
inference that utilizes a cheaper, randomized-fidelity unbiased esti-
mator of the target fidelity constructed via random truncation of a
telescoping series of the low-fidelity sequence of models. Finally, we
discuss and evaluate the proposed multi-fidelity MCMC approach on
several applications, including log-Gaussian Cox process modeling,
Bayesian ODE system identification, PDE-constrained optimization,
and Gaussian process parameter inference.

1. Introduction. Simulation and computational modeling play a key role in science, engi-
neering, economics, and many other areas. When these models are high-quality and accurate,
they are important for scientific discovery, design, and data-driven decision making. However,
the ability to accurately model complex physical phenomena often comes with a significant
cost—many models involve expensive computations that then need to be evaluated repeatedly in,
for instance, a sampling or optimization algorithm. Examples of model classes with expensive
computations include intractable integrals or sums, expensive quantum simulations (Troyer and
Wiese, 2005), expensive numerical simulations arising from partial differential equations (PDEs)
(Raissi et al., 2017) and large systems of ordinary equations (ODEs).

In many situations, one has the ability to trade off computational cost against fidelity or
accuracy in the result. Such a tradeoff might arise from the choice of discretization or the number
of basis functions when solving a PDE, or the number of quadrature points when estimating
an integral. It is often possible to leverage lower-fidelity models to help accelerate high-quality
solutions, e.g., by using multigrid methods (Hackbusch, 2013) for spatial discretizations. More
generally, multi-fidelity methods combine multiple models of varying cost and fidelity to accelerate
computational algorithms and have been applied to solving inverse problems (Higdon et al., 2002;
Cui et al., 2015; Raissi et al., 2017), trust region optimization (Alexandrov et al., 1998; Arian
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(a) Trapezoid rule with 2k trapezoids (k = 1, 2, 3) (b) Lokta-Volterra ODE solutions, dt = 1/k

Fig 1: Examples of low-fidelity sequences of models. (a) Sequence trapezoid quadrature estimates Ik,
where Ik is the trapzoid rule with 2k trapezoids. (b) Lokta-Volterra ODE solutions for prey u(t) (blue)
and predator v(t) (red) using Euler’s method with step size dt.

et al., 2000; Fahl and Sachs, 2003; Robinson et al., 2008; March and Willcox, 2012), Bayesian
optimization (Jones et al., 1998; Gramacy and Lee, 2009; Song et al., 2019; Wu et al., 2020; Li
et al., 2020; Brevault et al., 2020), Bayesian quadrature (Gessner et al., 2020; Xi et al., 2018),
and sequential learning (Gundersen et al., 2021; Palizhati et al., 2022).

One critically important tool for scientific and engineering computation is Markov chain Monte
Carlo (MCMC), which is widely used for uncertainty quantification, optimization, and integration.
MCMC methods are recipes for constructing a Markov chain with some desired target distribution
as the limiting distribution. Pseudo-random numbers are used to simulate transitions of the
Markov chain in order to produce samples from the target distribution. However, MCMC often
becomes impractical for high-fidelity models, where a single step of the Markov chain may, for
instance, involve a numerical simulation that takes hours or days to complete. Multi-fidelity
methods for MCMC focus on constructing Markov chain transition operators that are sometimes
able to use inexpensive low-fidelity evaluations instead of expensive high-fidelity evaluations.
The goal is to increase the effective number of samples generated by the algorithm, given a
constrained computational budget. A large focus of the multi-fidelity MCMC literature is on
two-stage Metropolis-Hastings (M-H) methods (Christen and Fox, 2005; Efendiev et al., 2006),
which use a single low-fidelity model for early rejection of a proposed sample, thereby often
short-circuiting the evaluation of the expensive, high-fidelity model.

However, there are several limitations of two-stage multi-fidelity Monte Carlo. First, in many
applications, a hierarchy of cheaper, low-fidelity models is available; for instance, in the case of
integration, k-point quadrature estimates form a hierarchy of low-fidelity models, and in the case
of a PDE, varying the discretization. Thus, the two-stage approach does not fully utilize the
availability of a hierarchy of fidelities and may be more suitable for settings where the high- and
low-fidelity models are not hierarchically related, e.g., semi-empirical methods vs. Hartree-Fock
in computational chemistry. In addition, in such applications, there is often a limiting model of
interest, such as a continuous function that the low-fidelity discretizations approximate. Two-stage
MCMC does not asymptotically sample from this limiting target density and will at best sample
from an approximation of the biased, high-fidelity posterior. Finally, the two-stage method is
unnatural to generalize to more sophisticated MCMC algorithms such as slice sampling and
Hamiltonian Monte Carlo (HMC).

We propose a class of multi-fidelity MCMC methods designed for applications with a hierarchy
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of low-fidelity models available. More specifically, we assume access to a sequence of low-fidelity
models that converge to a “perfect-fidelity” model in the limit. Within an MCMC algorithm, we
can approximate the perfect-fidelity target density with an unbiased estimator constructed from a
randomized truncation of the infinite telescoping series of low-fidelity target densities. This class
of multi-fidelity MCMC is an example of a pseudo-marginal MCMC (PM-MCMC) algorithm—the
unbiased estimator essentially guarantees that the algorithm is asymptotically exact in that the
limiting distribution recovers the perfect-fidelity target distribution as its marginal distribution.
Our approach introduces the fidelity of a model as an auxiliary random variable that is evolved
separately from the target variable according to its own conditional target distribution; this
technique can be used in conjunction with any suitable MCMC update that leaves the conditional
update for the target variable of interest invariant, such as M-H, slice sampling, elliptical slice
sampling, or Hamiltonian Monte Carlo. We apply the pseudo-marginal multi-fidelity MCMC
approach to several problems, including log-Gaussian Cox process modeling, Bayesian ODE
system identification, PDE-constrained optimization, and Gaussian process parameter inference.
Related work. Multi-fidelity MCMC methods are commonly applied in a two-stage procedure,

where the goal is to reduce the computational cost of using a single expensive high-fidelity
model by using a cheap low-fidelity model as a low-pass filter for a delayed acceptance/rejection
algorithm (Christen and Fox, 2005; Efendiev et al., 2006; Cui et al., 2015); see Peherstorfer
et al. (2018) for a survey. Higdon et al. (2002) propose coupling a high-fidelity Markov chain
with a low-fidelity Markov chain via a product chain. In constrast, our approach aims to sample
from a “perfect-fidelity” target density while reducing computational cost; two-stage MCMC
algorithms result in biased estimates with respect to this target density. A related class of methods
is multilevel Monte Carlo (Giles, 2008, 2013; Dodwell et al., 2015; Warne et al., 2021), which uses
a hierarchy of multi-fidelity models for Monte Carlo estimation by expressing the expectation of a
high-fidelity model as a telescoping sum of low-fidelity models. Dodwell et al. (2015) use the M-H
algorithm to form the multilevel Monte Carlo estimates, simulating from a separate Markov chain
for each level of the telescoping sum. In practice multilevel Monte carlo requires choosing a finite
number of fidelities, inducing bias in the estimator with respect to the (limiting) perfect-fidelity
model. In contrast, our method uses a randomized fidelity within a single Markov chain with the
perfect-fidelity model as the target.

Our approach applies pseudo-marginal MCMC to multi-fidelity problems. There is a rich
literature developing pseudo-marginal MCMC methods (Beaumont, 2003; Andrieu and Roberts,
2009) for so-called “doubly-intractable” likelihoods, which are likelihoods that are intractable to
evaluate. Several approaches in the pseudo-marginal MCMC literature are particular relevant to
our work. The first are the PM-MCMC methods introduced by Lyne et al. (2015), which describes
a class of pseudo-marginal M-H methods that use Russian roulette estimators to obtain unbiased
estimators of the likelihood. However, this method samples the variable of interest jointly with
the auxillary randomness, which often leads to sticking.

Alternatively, several methods have considered sampling the randomness separately. The idea of
clamping random numbers is explored in depth by Andrieu et al. (2010) and Murray and Graham
(2016); the latter applies to this pseudo-marginal slice sampling. In particular, our approach applies
these ideas to the specific setting of multi-fidelity models, where the random fidelity is treated as
an auxillary variable. Finally, while our approach applies to doubly-intractable problems, we are
also motivated by a larger class of multi-fidelity problems studied in the computational sciences
that may not even be inference problems, such as quantum simulations and PDE-constrained
optimization.
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2. Multi-fidelity MCMC. Monte Carlo methods approximate integrals and sums that can
be expressed an expectation:

Eπ(h(θ)) =

∫
h(θ)π(θ) dθ ≈ 1

T

T∑
t=1

h(θ(t)), where θ(t) ∼ π, (1)

and where π : Θ→ R+ is the target density that may only be known up to a constant, h(θ) is a
function of interest, and {θ(t)}Tt=1 are samples from π. Markov chain Monte Carlo methods are
then used to generate samples θ(t) from π by simulating from a Markov chain with target π.

In many settings, pointwise evaluations of the target function π(θ) are expensive or even
intractable; from here on we will assume that the goal is to compute statistics of a quantity of
interest h(θ) with respect to a perfect-fidelity target density π∞(θ). In practice, the estimate in
Equation (1) is instead estimated using a cheaper, low-fidelity density πk(θ), where k ∈ N :=
{1, 2, . . .}. In particular, we consider settings where there is a sequence of low-fidelity densities
available that converge to the target, i.e., πk(θ)

k→∞−→ π∞(θ). We assume that as k increases, the
model becomes higher in fidelity (with respect to π∞) but more costly to evaluate, increasing in
expense super-linearly with k.

For instance, π∞ could represent a target density that depends on an intractable integral, the
solution of a PDE, the solution of a large system of ODEs, the solution of a large system of
linear equations, or the minimizer of a function. Thus, a typical evaluation of π∞ requires an
approximation at a fidelity k with a tolerable level of bias for a given computational budget.
Here increasing k could correspond to finer discretizations of differential equations, increasing
numbers of quadrature points, or performing a larger number of iterations in a linear solver or
optimization routine.

In the multi-fidelity setting, the goal is to combine several models of varying fidelity within an
MCMC algorithm to reduce the computational cost of estimating Equation (1). In this paper,
we describe a class of MCMC algorithms that leverages the sequence of low-fidelity models πk.
Our strategy for multi-fidelity MCMC (MF-MCMC) will be to construct an unbiased estimator
of π∞(θ) using random choices of the fidelity K and then to include K in the Markov chain
as an auxiliary variable. By carefully constructing such a Markov chain, it will be possible to
asymptotically estimate the functional in Equation (1) as though the samples were taken from
the perfect-fidelity model; each step of the Markov chain will nevertheless only require a finite
amount of computation. Finally, our approach allows us to essentially plug in any valid MCMC
algorithm, and we apply this strategy to develop multi-fidelity variants of a number of MCMC
algorithms, such as M-H and slice sampling.

2.1. Pseudo-marginal MCMC for the multi-fidelity setting. Pseudo-marginal MCMC (Beau-
mont, 2003; Andrieu and Roberts, 2009) is a class of auxillary-variable MCMC algorithms that
replaces the target density π(θ) with an estimator π̂(θ) that is a function of a random variable.
If the estimator is nonnegative and unbiased, i.e., for all θ ∈ Θ, π̂(θ) ≥ 0 and E[π̂(θ)] = π(θ),
then MCMC transitions that use the estimator still have π(θ) as their invariant distribution.
This property is sometimes referred to as “exact-approximate” MCMC as the transitions are
approximate but the limiting distribution is exact. Estimators can be constructed from a variety
of methods, including particle filtering (Andrieu and Roberts, 2009); our approach will use
randomized series truncations, which has been consider in pseudo-marginal MCMC methods such
as Lyne et al. (2015), Georgoulas et al. (2017), and Biron-Lattes et al. (2022).
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We now apply the pseudo-marginal approach to the multi-fidelity setting. Here the target
density estimator arises from a random choice of the fidelity K ∈ N that is governed by a
distribution µ on N. We denote the estimator using π̂K(θ) to make the dependence on the random
fidelity K explicit. The estimator is constructed such that it is unbiased with respect to µ, i.e.,

∞∑
k=1

µ(k)π̂k(θ) = π∞(θ) . (2)

The distribution µ is also constructed by the user: ideally, the estimator π̂K(θ) will prefer
smaller values of K while having sufficiently low variance as to allow the Markov chain to mix
effectively. Thus the simulations can be run at inexpensive low-fidelities, while the estimates will
be as though the perfect-fidelity model were being used.

The standard pseudo-marginal MCMC approach is to construct a Markov chain that has the
following joint density as its stationary distribution:

π(θ,K) = µ(K)π̂K(θ). (3)

Observe that while Equation (3) does not depend on the perfect-fidelity target density π∞, it
returns the desired marginal π∞ via Equation (2). As a concrete example, a pseudo-marginal
M-H algorithm generates a new state θ′ and fidelity K ′ jointly using q(θ′; θ) as the proposal
for θ′, q(K ′;K) = µ(K ′) as the proposal distribution for the fidelity, and accepts/rejects the state
according to

a =
π(θ′,K ′)q(θ; θ′)q(K;K ′)

π(θ,K)q(θ′; θ)q(K ′;K)
=
π̂K′(θ

′)q(θ; θ′)

π̂K(θ)q(θ′; θ)
, (4)

where the equality holds since the distribution terms forK andK ′ cancel. Note that the right-hand
side of Equation (4) is the standard M-H ratio but that the target density π is replaced with the
estimator π̂K .

However, standard pseudo-marginal MCMC using joint proposals of the state and fidelity
can “get stuck” when the estimator is noisy and fail to accept new states. Thus, we apply
the approach in Murray and Graham (2016) that augments the Markov chain to include the
randomness of the estimator via a separate update; here the randomness of the estimator arises
from the fidelity K. Concretely, we construct a Markov chain that simulates from Equation (3)
by alternating sampling between the conditional target densities π(K|θ) and π(θ|K) (steps 5 and
6 of Algorithm 1, respectively). We refer to this strategy as multi-fidelity MCMC (MF-MCMC),
since by conditioning on K = k, the update for the state θ becomes a standard deterministic
update applied to a low-fidelity model π̂k(θ), and any appropriate MCMC update can be used
here, making it straightforward to use complex MCMC methods, such as slice sampling and
HMC. Similarly, any suitable MCMC update for the fidelity K can be used using the conditional
target π(K|θ).

Many techniques can be used to construct an unbiased estimator of π∞ with randomness K;
we describe a general approach in the next section. However, it is generally difficult to guarantee
the estimator is nonnegative, as required by pseudo-marginal MCMC. One technique considered
by Lin et al. (2000) and Lyne et al. (2015) is to instead sample from the target distribution
induced by the absolute value of the estimator and applying a sign-correction to the final Monte
Carlo estimate in Equation (1), an approach borrowed from the quantum Monte Carlo literature
where it is necessary for modeling fermionic particles. This approach has been applied to the M-H
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algorithm, but we note that this general approach can be applied much more broadly, as we do in
this work.

In problems where the estimator may be negative, we sample from the conditional target
distributions using the absolute value of the estimator |π̂K(θ)|, and we denote these conditionals
with π̃(K | θ) ∝ µ(K)|π̂K(θ)| and π̃(θ|K = k) ∝ |π̂k(θ)|. The estimate in Equation (1) is then
corrected using the signs σ(θ, k) of evaluations of π̂k(θ),∫

h(θ)π(θ) dθ ≈
∑T

t=1 h(θ(t))σ(θ(t),K(t))∑T
t=1σ(θ(t),K(t))

=: ÎT , (5)

where {(θ(t),K(t))}Tt=1 are the sampled values from the joint distribution π̃(θ,K) ∝ |π̂K(θ)|µ(K).
Importantly, the sign-corrected estimate still asymptotically leads to the desired estimate of the

functional of interest. Let σ(θ, k) denote the sign of the estimator such that π̂k(θ) = σ(θ, k)|π̂k(θ)|.
The estimator ÎT in Equation (5) is formed using a Monte Carlo estimate of the functional after
expanding it into its joint distribution, i.e.,∫

h(θ)π∞(θ)dθ =

∫ ∞∑
k=1

h(θ)π̂k(θ)µ(k)dθ =

∫ ∑∞
k=1 h(θ)σ(θ, k)π̃(θ, k)dθ∫ ∑∞
k=1 σ(θ, k)π̃(θ, k)dθ

. (6)

The full multi-fidelity MCMC algorithm with sign correction summarized in Algorithm 1. We
note that while the Markov chain no longer converges to a target with the marginal π∞, the
final estimate after sign-correction—which is the downstream goal of interest—converges to the
quantity of interest due to Equation (6). While this may seem limiting if one is interested in the
posterior itself, useful unbiased posterior summaries may be still be obtained via the functional,
such as the posterior mean, variance, quantiles, and histograms that may be used to visualize
marginal distributions.

3. Unbiased low-fidelity estimators via randomized truncations. In this section, we
discuss how to construct an unbiased estimator of π∞(θ), given a sequence of low-fidelity likelihoods
with the property πk(θ)→ π∞(θ) as k →∞. This estimator has the property that it requires a
finite amount of computation with probability one, and it also has a tunable amount of expected
computation per estimate, i.e., it uses low-fidelity density evaluations to estimate the perfect-
fidelity target density. The central idea of this estimator has been used for decades, going back
to John von Neumann and Stanislaw Ulam. More recently it has found use in applications of
inference and optimization in related work such as Glynn and Rhee (2014), Lyne et al. (2015),
Beatson and Adams (2019), and Jacob et al. (2020).

First note that we can express the perfect-fidelity model as a telescoping sum of low-fidelity
models: let π0(θ) = 0 and write

π∞(θ) =
∞∑
k=1

πk(θ)− πk−1(θ). (7)

The estimator π̂K is then constructed by taking a random truncation K ∼ µ of the infinite
telescoping series. The sampled terms in the sum are then reweighted to ensure the estimator
remains unbiased:

π̂K(θ) =

K∑
k=1

wk,K(πk(θ)− πk−1(θ)) . (8)
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Algorithm 1 Multi-fidelity Monte Carlo with sign-correction
1: Input: Initial state θ and fidelity K, truncation distribution µ
2: for t = 1, . . . , T do
3: Given current K and θ, form estimator π̂K(θ) =

∑K
k=1 wk,K(πk(θ)− πk−1(θ))

4: Save sign σ(θ,K) = sign(π̂K(θ))
5: Update fidelity K leaving invariant the target conditional

π̃(K|θ) ∝ µ(K)|π̂K(θ)|

6: Update state θ leaving invariant the target conditional

π̃(θ|K = k) ∝ |π̂k(θ)|

7: end for
8: Output: Samples {(θ(t),K(t))} and estimate ÎT =

(∑T
t=1 σ

(t)h(θ(t))
)
/
(∑T

t=1 σ
(t)
)

Two approaches are commonly used to ensure that the resulting estimator is unbiased: weighted
single-term estimators and Russian roulette estimators. The single-term estimator (Lyne et al.,
2015) is constructed by importance sampling a term from the series in Equation (7): the truncation
level is drawn as K ∼ µ, and the Kth term is used to form the estimate

π̂K(θ) = µ(K)−1(πK(θ)− πK−1(θ)) . (9)

Thus, the weight in Equation (8) is Wk,K = µ(K)−11(K = k). In the Russian roulette esti-
mator, the remaining terms in the estimator are reweighted by their survival probabilities,
i.e., Wk,K = (1−

∑k−1
k′=1 µ(k′))−11(K ≥ k). The distribution µ controls the number of terms

in the estimator, and a good proposal distribution should match the tails of the sequence of
low-fidelity densities (Lyne et al., 2015; Beatson and Adams, 2019; Potapczynski et al., 2021).

The ability to use cheaper models is a key feature of multi-fidelity inference, and the low-fidelity
estimator provides a means to reduce the computational cost of multi-fidelity Monte Carlo.
However, these estimators are an example of a class of methods that explores a compute-variance
tradeoff: computationally cheaper estimates leads to high variability. The resulting increase in
variance slows down the convergence of the MCMC procedure and could lead to an overall less
efficient method due to a reduced effective sample size.

4. Summary of the multi-fidelity MCMC recipe. Here we summarize the recipe for
constructing a multi-fidelity Markov chain Monte Carlo algorithm.

First, identify a sequence of increasing-fidelity target densities with the property that their
limit is the desired “perfect-fidelity” density. Low-fidelity densities should be cheap with the cost
rapidly increasing within the sequence. In the context of Bayesian inference, it may be appropriate
to focus the multi-fidelity aspects on the likelihood term and construct the target densities via,
e.g., πk(θ;D) ∝ π0(θ)Lk(θ ; D), where π0 is the prior, Lk is a low-fidelity likelihood, and D is the
set of observations. This likelihood-based version is what we use in several of the experiments.

Next, introduce a truncation distribution µ on N. This truncation distribution should be chosen
to balance between expected cost and variance of the resulting estimator; our overall goal is to
mostly use cheap low-fidelity densities, but high-variance estimators will presumably damage the
mixing time and/or the asymptotic variance.

Initialize the Markov chain with a reasonable choice for θ and a draw ofK from the distribution µ.
Each step of the Markov chain simulation consists of an update to θ given K and an update of K
given θ. The update of θ given K can be performed using any standard MCMC algorithm, e.g.,
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(a) Two-stage MH (b) Multi-fidelity MH (c) MH sampler estimate vs cost

(d) Single-fidelity slice (e) Multi-fidelity slice (f) Slice sampler estimate vs cost

Fig 2: Conjugate Gaussian model. Left: Histograms for M-H (a,b) and slice sampling (d,e). Right:
Comparison of posterior standard deviation estimate vs computation for M-H (c) and slice sampling (d)
methods. Average posterior mean computed over 4 different chains.

M-H, slice sampling, or HMC, applied to the low-fidelity estimator. It is important to use the
absolute value of the estimator and keep track of its sign. The update of K given θ is also flexible,
but it is reasonable to construct the update so that only a few K are considered in each step, as
each of those fidelities will need to be evaluated. By default, we consider a simple random walk
on the positive integers for our experiments. After running a sufficient number of steps of the
Markov chain, use the sign corrected-estimator in Equation (5) to compute the expectation of
the function h(θ).

5. Experiments. In all experiments, we use a random-walk M-H update to sample from the
conditional K|θ, and truncation distribution µ(K) = geometric(K; γ0). Additional experimental
details are in Appendix D.

5.1. Toy conjugate Gaussian models. In order to understand the behavior of MF-MCMC on
a simple example of Bayesian inference, we first examine an example where the computational
cost of evaluating the sequence of low-fidelity likelihoods does not increase with k. Consider a
perfect-fidelity likelihood L∞(θ) = N (x; θ, σ∞) and a low-fidelity likelihood Lk(θ) = N (x; θ, σk),
where σ2k → σ2∞. The prior is π0(θ) = N(θ|0, 1), and so a closed-form posterior density can be
computed. Here we consider the sequence σ2k = 1 + 2/k2 and σ2∞ = 1. In Figure 2 we compare the
results of single-fidelity and multi-fidelity M-H and slice sampling as well as the two-stage M-H
algorithm summarized in Appendix B.4. We consider 2 two-stage M-H settings with high and
low fidelities of {kHF, kLF} = {1000, 10} and {kHF, kLF} = {100, 5}. The histograms show the
bias of each method after simulating 10,000 samples, and the solid gray curve denotes the exact
posterior density. We also compute a measure of total cost and a running average of the estimate
of the posterior standard deviation functional, where the dotted black line denotes the true value.
The number of cost-adjusted likelihoods was computed by upweighting each likelihood evaluation
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Fig 3: Coal mining disasters 1850–1963. Left: Posterior mean of the rate function at the observed data
points. Right: Posterior mean of the rate function at T = 1862 vs computation.

by the fidelity. Here the multi-fidelity methods typically converge to a similar value as the single
high-fidelity methods but in fewer cost-adjusted likelihood evaluations.

5.2. Log-Gaussian Cox processes. We examine an application of MF-MCMC to the log Gaus-
sian Cox process (LGCP) model (Møller et al., 1998), where the perfect-fidelity model is a function
of an integral and the lower-fidelity sequence of models arises from k-point quadrature estimates.
Let log f ∼ GP(0, κ`), where κ`(x, x′) = exp

(
− 1

2`2
‖x− x′‖22

)
and where ` is a lengthscale hyper-

parameter. Consider an inhomogenous Poisson process on X ⊆ RD with intensity λ(x) = ef(x).
Given a random set of points {Xn}Nn=1, the perfect-fidelity likelihood is

L∞(f) = exp

(∫
X

(1− ef(x))dx
) N∏
n=1

ef(Xn). (10)

Typically, inference in the LGCP uses a grid-based approximation of Equation (10), where the
points are binned into counts and modeled with a Poisson likelihood (Murray et al., 2010; Diggle
et al., 2013; Teng et al., 2017), resulting in a biased posterior. Because the likelihood depends on
a high-dimensional latent Gaussian vector, we perform inference for f using the elliptical slice
sampling (ESS) algorithm (see Appendix B.3). We approximate the integral in Equation (10)
with a trapezoidal quadrature rule Ik, where the number of quadrature points is a linear function
of k.

We apply multi-fidelity and single-fidelity ESS algorithms to a coal mining disasters data set
(Carlin et al. (1992)). The data contain the dates of 191 coal mine explosions that killed ten
or more men in Britain between March 15, 1851 and March 22, 1962. Figure 3 (left) shows the
estimated mean intensity and standard deviation on coal mining disasters data between one run
of multi-fidelity ESS and single-fidelity ESS with k = 10, 100, 1000 quadrature points. In this
plot, the high- (k = 1000) and multi-fidelity posterior mean and standard deviation estimates
match well, and the bias in the lowest fidelity (k = 10) estimate is apparent. We also computed
the cost-adjusted number of likelihood evaluations performed in each iteration of MF-ESS and
SF-ESS. Figure 3 (right) shows the average estimated mean intensity at the time step t = 1862 on
the three models against the average cost-adjusted number of likelihood evaluations per iteration.
We observe that the multi-fidelity and high-fidelity estimates are close after many iterations of
sampling, but that the multi-fidelity estimate converges with less computation.

5.3. Bayesian ODE system identification. We now apply the MF-MCMC approach to Bayesian
system identification for the Lotka-Volterra ODE. Let u(t) ≥ 0 represent the population size of
the prey species at time t, and v(t) ≥ 0 represent the population size of the predator species.
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(a) Sampled posterior trajectories under a fixed computational budget

(b) Posterior mean estimate vs computational cost

Fig 4: Lokta-Volterra system parameter identification. The fidelity represents (a function of) the step size
dt of the ODE solver.

The dynamics of the two species given parameters α, β, γ, δ ≥ 0 are given by a pair of first-order
ODEs:

d

dt
u = (α− βv)u = αu− βuv, d

dt
v = (−γ − δu)v = −γv − δuv. (11)

System identification solves the inverse problem by estimating the parameters of the ODE system
θ = (α, β, γ, δ). Taking a Bayesian approach, we specify a noise model for the observed data
and priors on the parameters, and we use MCMC to infer a distribution over the solution. For
simplicity, we assume that the initial conditions are known and fix σ = 0.25.

Define zn := (u(tn), v(tn)) and let z1(θ), . . . , zN (θ) be the solutions to the Lotka-Volterra
differential equations at times t1, . . . , tN given the initial conditions and the system parame-
ters θ = (α, β, γ, δ). Suppose we have observations arising from log(yn) = log(zn) + εn, where
ε ∼ N(0, σ2I). The low-fidelity likelihood is a function of a numerical solution of the ODE using
a time step of size dt (Equation (D.3)). We compared the performance of a multi-fidelity elliptical
slice sampler to single-fidelity ellipitical slice samplers with step size dt = 1 × 10−5, 1 × 10−4.
For the ODE solver, we considered both an Euler solver and an 4th-order Runge-Kutta solver
(Figure D.1). Figure 4a shows 200 trajectories corresponding to parameters sampled from the
posterior distributions under each method using the Euler solver. Figure 4b shows posterior mean
estimates for each system parameter. We observe that the estimates from the multi-fidelity slice
sampler approach the estimates reported by Howard (2009) (black dotted lines) in less time than
the single-fidelity samplers.

5.4. PDE-constrained optimization. We now consider global optimization of a PDE-constrained
objective, where an expensive physical simulation is run repeatedly in an outer loop problem.
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Fig 5: PDE-constrained optimization with a linear heat equation. Estimate for α (left) and β (right) vs
computation. The black dotted lines denote the true values of α, β.

A common approach for global optimization is simulated annealing, which has been applied to
constrained global optimization (Romeijn and Smith, 1994). Consider a model for heat flow in a
thin rod of length L with spatial coordinates x ∈ [0, L]. Let u(x, t) represent the temperature in
the rod at position x and time t, and let ū represent a desired target temperature. The goal is to
minimize a loss function subject to u satisfying a linear heat equation. This objective along with
an initial condition and homogenous boundary conditions can be summarized as:

minimizeu ‖u− ū‖22

subject to
∂u

∂t
= α · ∂

2u

∂x2
+ 2β · u, (12)

u(x, 0) = sin
(
πx/2

)
,

u(0, t) = u(L, t) = 0, x ∈ [0, L], t ∈ [0, T ],

where α, β > 0 are the system parameters. The goal is to find θ = (α, β) that minimizes the
objective and satisfies the constraints. To solve the PDE, we discretize the domain into a grid of
size ∆x and represent the second derivative using the central difference formula. This induces a
system of ODEs that we solve numerically using a Tsitouras 5/4 Runge-Kutta method, setting
∆t = 0.4∆x2 so as to satisfy a CFL stability condition. Here the fidelity of the problem is given
by the size of the spatial discretization ∆x, which in turn controls ∆t. We compared against two
single-fidelity discretizations of the spatial coordinate, where ∆x = 5× 10−3, 1× 10−2. The results
are in Figure 5, where we plot two of the MF results with γ0 = 0.1, 0.25. In these examples, the
multi-fidelity estimates converge faster than the single-fidelity estimates in wallclock time.

5.5. Gaussian process regression parameter inference. Let X ∈ RN×D and consider a Gaussian
process regression model with a squared exponential kernel:

f ∼ GP(0, kθ), y = f(X) + ε, ε ∼ N (0, σ20), kθ(x, x
′) = exp

(
− 1

2θ2
‖x− x′‖22

)
, (13)

where we assume σ20 is known. Let Σθ := [kθ(xi, xj)]i∈[N ],j∈[N ].
In many applications of Gaussian process modeling, one is interested in integrating out

the parameters θ using MCMC. Computing the posterior π(θ|X, y) is expensive because each
evaluation of the likelihood p(y|X, θ) = N (y | 0,Σθ + σ20I) involves computing a determinant and
solving a linear system with respect to the matrix Σθ + σ20I, which has an O(N3) computational
cost associated with standard methods (e.g., Cholesky decomposition). For simplicity, we will
only consider the fidelity of solution to the linear system, but we note that the determinant can
considered using the approach described in Potapczynski et al. (2021). Additional derivations
and details are in Appendix D.5.
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(a) Histograms of high, low, two-stage, and multi-fidelity (b) Posterior mean estimate vs computation

Fig 6: Parameter inference in a Gaussian process regression model. Left: The posterior distribution of
the parameter θ. Right: The posterior mean estimate vs computional cost.

We generate synthetic data from the GP model with N = 100, σ20 = 1, and lengthscale
θ0 = 45. For the GP model, we use a log Normal prior on θ given above in Equation (D.5) with
parameters ν0 = 3.8, ν1 = 0.03. In Figure 6, we compare these approaches using single-fidelity,
multi-fidelity, and two-stage M-H samplers. The low-fidelity likelihood sequence was constructed by
computing the solution to the linear system using a preconditioned conjugate gradient solver with
k steps. The single-fidelity likelihoods were a high-fidelity likelihood (k = N) and a low-fidelity
likelihood (k = kN � N), and the multi-fidelity M-H samplers used γ0 = 0.1. The two-stage M-H
approach used high and low fidelities of k ∈ {100, 5}. For all methods, we use a M-H sampler
with T = 50000 iterations. In the histograms, we observe that the high-fidelity, multi-fidelity and
two-stage approaches tend to lead to similar posteriors, while the low-fidelity sampler has more
noticable bias with respect to the high-fidelity histogram. The estimate produced by the multi-
fidelity samplers converged in fewer cost-adjusted likelihood evaluations than the high-fidelity
and two-stage approaches.

6. Discussion and future work. In this work, we introduced a class of multi-fidelity MCMC
that uses a low-fidelity unbiased estimator to reduce the computational cost of sampling while still
maintaining the desired limiting target distribution of the Markov chain. In particular, we have
demonstrated the use of our framework on more advanced MCMC algorithms beyond M-H, such
as slice sampling, and to additional settings such as optimization. Our results show a reduction
in computation while producing accurate solutions in comparison with high-fidelity models
when it is possible to construct a target estimator that is not too noisy. Many future directions
remain. First, applying MF-MCMC to large-scale expensive applications has many computational
challenges. Making the method more robust to specialized problems is important, especially if the
estimator is heavy-tailed. Thus, constructing good proposal distributions matching properties of
the low-fidelity target sequence is crucial, especially for application to high-dimensional problems.
In addition, we have thus far focused on target densities where there is a single computation
whose fidelity is varied. However, in many settings, there may be target densities with multiple
computations that converge at different rates, for example, if the target density includes both an
intractable integral and a solution of a linear system. Our framework can be extended to that
setting by adjusting the proposal distribution, and it is useful to understand how these rates
impact the convergence properties of the sampler.

Acknowledgments. This work was partially supported by NSF grants IIS-2007278 and OAC-
2118201. D. Cai was supported in part by a Google Ph.D. Fellowship in Machine Learning.
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APPENDIX A: ADDITIONAL RELATED WORK

Approximate Bayesian computation (ABC) is a related class of methods to pseudo-marginal
MCMC for implicit likelihoods. We note that the asymptotic target for ABC is an approximation
to the target density of interest. Prescott and Baker (2020) propose a multi-fidelity approach to
ABC. A number of multilevel ABC approaches (Guha and Tan, 2017; Lester, 2018; Warne et al.,
2021) have also been proposed in recent work.

In our work, the Russian roulette estimator is used to construct an unbiased, low-fidelity
likelihood. The Russian roulette estimator has been used recently in a number of applications for
optimization and inference (Beatson and Adams, 2019; Luo et al., 2020; Potapczynski et al., 2021).
In particular, Potapczynski et al. (2021) apply similar techniques to get an unbiased estimate of
the gradient of the marginal likelihood for Gaussian process regression; this can viewed as an
optimization analog to our approach.

APPENDIX B: REVIEW OF MCMC ALGORITHMS

In this section, we review the MCMC algorithms used in the main paper.

B.1. Random-walk Metropolis-Hastings. Draw proposal θ′ ∼ q(· | θ). Accept or reject
the proposed value according to:

R = min

(
1,
π(θ′,D)q(θ|θ′)
π(θ,D)q(θ′|θ)

)
In our experiments, we use a proposal distribution of the form q(θ′|θ) = N (θ′|θ, τ), where the

parameter τ needs to be tuned.

B.2. Slice sampling. Slice sampling (Neal, 2003) is auxillary-variable algorithm that auto-
matically generates proposals without the need for an explicit accept/reject step.

Let P (θ) denote the joint distribution of interest. Given current state θ, sample a uniform
random variable u ∼ Unif(0, p(θ)). This random variable induces a height at the current state
given by u′ = uP (θ). A horizontal bracket (θl, θr) is defined around θ and a proposal θ′ is
generated. If P (θ′) > u′, the proposal is accepted; otherwise the bracket is decreased. We use the
“stepping out” and shrinking procedures for generating and shrinking the proposal bracket, as
defined in MacKay (2003, Chapter 29.7).

B.3. Elliptical slice sampling. Elliptical slice sampling (Murray et al., 2010) is used for
inference in latent Gaussian models. Let f ∼ N(0,Σ) denote the latent D-dimesional Gaussian
variable of interest, and consider a likelihood L(f) = p(D | f). The target distribution of interest
is the joint distribution

π∗(f) =
1

Z
N (f ; 0,Σ)L(f), (B.1)

where Z is the marginal likelihood of the model. The algorithm is summarized in Algorithm B.1.

B.4. Two-stage Metropolis-Hastings. The two-stage MH algorithm assumes a single
high fidelity likelihood LHF and low fidelity likelihood LLF. In each iteration t, a proposal θ′ is
generated from the proposal distribution q(·|θ(t−1)).
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Algorithm B.1 Summary of the elipitical slice sampling iteration (from Murray et al. (2010,
Figure 2)).
1: Input: Current state f , log-likelihood L
2: Choose ellipse ν ∼ N (0,Σ)
3: Construct log-likelihood threshold:

u ∼ Unif[0, 1]

log y = logL(f) + log u

4: Draw initial proposal, define a bracket

θ ∼ Unif[0, 2π]

[θmin, θmax] ∼ [θ − 2π, θ]

5: Define proposal f ′ = f cos θ + ν sin θ
6: if logL(f ′) > log y then
7: Accept proposal f ′

8: else
9: Resize bracket and generate new proposal:
10: if θ < 0 then:
11: θmin = θ
12: else:
13: θmax = θ
14: end if
15: θ ∼ Unif[θmin, θmax]
16: Goto Step 5
17: end if
18: Output: New state f ′

Stage 1: The proposal is accepted for the second stage or rejected according to the acceptance
probability

RLF(θ; θ′) = min

(
1,
π(θ′)LLF(θ′)q(θ|θ′)
π(θ)LLF(θ)q(θ′|θ)

)
, (B.2)

where θ = θ(t−1). If the proposal is rejected, then the value θ(t) = θ(t−1).
Stage 2: In the second stage, the proposal θ′ is accepted with probability

RHF(θ; θ′) = min

(
1,
π(θ′)LHF(θ′)Q(θ|θ′)
π(θ)LHF(θ)Q(θ′|θ)

)
, (B.3)

where the proposal distribution Q satisfies

Q(θ′|θ) = R(θ′, θ)q(θ′|θ) +

(
1−

∫
R(θ, θ′)q(θ′|θ)dθ′

)
δθ(θ

′). (B.4)

Note that in the algorithm, the integral does not need to be explicitly computed, since if θ = θ′,
the chain remains at the same value, and if θ 6= θ′, then Q(θ′|θ) = RLF(θ; θ′)q(θ′|θ). Note that
the high-fidelity acceptance probability can be easily computed as

RHF(θ; θ′) = min

(
1,
LHF(θ′)LLF(θ)

LHF(θ)LLF(θ′)

)
. (B.5)

If the proposal is accepted, then the value θ(t) = θ′, and otherwise, θ(t) = θ(t−1).
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APPENDIX C: MULTI-FIDELITY SIMULATED ANNEALING

In simulated annealing, the goal is to sample from some distribution

P (θ) ∝ exp(−E(θ)),

where E(θ) is an energy function (the interpretation is, e.g., a negative log-likelihood). If used
for optimization, E(θ) is the function we are interested in minimizing. In the simplest simulated
annealing case, we instead sample from the annealed distribution

π(θ) ∝ exp(−E(θ))
1
T = exp(−E(θ)/T ).

To adapt this to a multi-fidelity method, we consider energy functions of fidelity K, denoted
by EK(θ). the target densities π(θ|K) and π(K|θ).

To sample from π(θ|K), we accept or reject a proposal θ′ based on:

R = exp

(
−EK(θ′)− EK(θ)

T

)
.

To sample from π(K|θ), we accept or reject a proposal K ′ based on:

R = exp

(
−EK

′(θ)− EK(θ)

T

)(
µ(K ′)

µ(K)

) 1
T

.

APPENDIX D: EXPERIMENTS: ADDITIONAL EXPERIMENTS AND METHOD DETAILS

In this section, we provide additional details for the methods used in our experiments along
with additional details of the setup of each experiment.

Methods compared. We will use the abbreviations SF to denote a single-fidelity algorithm, e.g.,
SF M-H, MF to refer to the pseudo-marginal MF-MCMC method proposed in this work, and
TS to refer to the two-stage M-H algorithm described in Appendix B.4. The primary sampling
algorithms used to update the state θ|K are Metropolis-Hastings (M-H), (line) slice sampling
(SS), and elliptical slice sampling (ESS).

Target estimator π̂. In our experiments, by default we consider the Russian roulette estimator
with µ = geometric(γ0), unless stated otherwise.

Sampling the fidelity K|θ. To sample the fidelity from the conditional target K|θ, we consider
the following random walk M-H move. Here the target is

π(K|θ) ∝ µ(K)π̂K(θ). (D.1)

To propose a new fidelity, we consider a random walk on the positive integers: flip a fair coin
to determine a new candidate location k∗ = k ± 1, where k is the current value. Then we can
compute the following ratio and decide to accept/reject this candidate value:

R = min

(
1,
µ(k∗)π̂k∗(D)

µ(k)π̂k(D)

)
.

In problems where the estimator may return negative values, we compute the absolute value of
the estimator |π̂|, as summarized in Algorithm 1.
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D.1. Toy conjugate sequence. In this example, we consider a toy conjugate Bayesian
model, where the data are assumed to arise i.i.d. from a perfect-fidelity model L∞(θ) = N (x; θ, σ∞),
and a conjugate prior on θ, N (θ|0, 1); conjugacy leads to a closed form Gaussian posterior density
that we can compute and compare to the posterior samples obtained from the methods that we
compare. Thus, the perfect-fidelity target is π∞(θ) ∝ N (θ|0, 1)

∏N
n=1N (Xn; θ, σ∞).

Now suppose that we only have access to the sequence of low-fidelity models Lk(θ) = N (x; θ, σk),
where σ2k → σ2∞. Here we consider the sequence σ2k = 1 + 2/k2 and σ2∞ = 1. In this example,
we consider the performance of (1) SF M-H, MF M-H, and two-stage M-H, and (2) SF slice
sampling and slice sampling (there is not an analogous two-stage MCMC algorithm for slice
sampling). We generate N = 200 observations D|θ0 from the perfect-fidelity likelihood with true
mean θ0 ∼ N (0, 1).

To compute the “cost” of a likelihood evaluation, we pretend that the likelihood evaluation
Lk has cost k. This is to demonstrate the cost of the method for problems where the cost of an
evaluation increases linearly with k.

In what follows, we first compare the low-fidelity estimators, and then we compare the sampling
methods on one choice of estimator.

Comparing SF-MCMC, MF-MCMC, and two-stage M-H. We also compare to the two-stage M-H
algorithm summarized in Appendix B.4; here we consider 2 two-stage setups of k = {1000, 10}
and k = {100, 5}. For all methods, we ran 4 chains initialized from the prior with T = 10000
iterations. We discarded 2000 burn-in samples and the subsequently collected every other sample.

D.2. Log Gaussian Cox Process. In this section, we provide details for the LGCP exper-
iment on the coal mining disasters data set.

We approximate the integral in Equation (10) with a trapezoidal quadrature rule Ik: i.e., given
k points x̃1, . . . , x̃k ∈ X and observed points {X1, . . . , XN}, the low-fidelity likelihood is:

Lk(f) = exp
(
Ik(f(x̃1), . . . , f(x̃K))

) N∏
n=1

ef(Xn), (D.2)

where Ik is a trapezoid quadrature rule with 2k + c quadrature points and c is a constant offset
parameter. When computing Lk for a grid of values different than the vector of latent function
values currently available, we draw new function values conditioned on the existing values of f .

For all samplers, we used a squared-exponential kernel with lengthscale ` = 20 and variance
of 1. For the low-fidelity estimator L̂k, we used a Russian roulette estimator and set the offset
c = 10. The truncation parameter of the MF model was fixed at γ0 = 0.08. The results in the
rightmost figure in Figure 3 are computed with respect to an average over 3 chains initialized
from the prior with T = 10000 samples. The estimates with MF-ESS in Figure 3 were adjusted
for negative signs; empirically, we observed roughly 2.5% of negative signs in our experiments.

D.3. Bayesian ODE system identification. Given a set of parameters θ and initial
conditions, we can solve the ODE at a fidelity k to obtain the solution z(k)n . Thus, the likelihood
of fidelity k is given by:

Lk(θ) =

N∏
n=1

2∏
j=1

LogNormal(log(z
(k)
n,j(θ)), σ), (D.3)
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where k represents the fidelity of the ODE solver for obtaining the solution zn(θ). We use the
following priors on the parameters

(logα, log β, log γ, log δ) ∼ N (θ0, σ0I), θ0 = [0,−2, 0,−3]>, σ0 = 0.1. (D.4)

In order to apply elliptical slice sampling, which requires the prior to have mean 0, we
apply a change of variables: define Lk(θ̄) = Lk(θ + θ0), and then transform the sampled values
θ(t) = θ̄(t) +θ0. In our experiments, we first verified the sampler was recovering values on synthetic
data generated with initial conditions z0 = [1.0, 1.0], system parameters α = 1.5, β = 1.0, γ =
3.0, δ = 1.0, and noise parameter σ = 0.8 at a grid of N solution values.

We then applied the method to the Hudson’s Bay Lynx-Hare data set, which documents the
canadian lynx and showshoe hare populations between 1900 and 1920, based on the data collefted
by the Hudson’s Bay company. We compared two single-fidelity models with ODE step size
dt = 1× 10−5, 1× 10−4. For the multi-fidelity ESS sampler, we visualize the results of γ0 = 0.12,
and the step size for the low-fidelity target sequence was computed as dt(k) = 1/(sk + c), where
we set s = 10 and c = 50.

The results using Euler’s method to solve the ODE are in Figure 4, and the results of the
4th-order Runge Kutta solver are in Figure D.1. The maximum number of iterations of each ODE
solver was set to 1× 108 iterations.

In the top row of each figure, the black vertical dotted line denotes maximum likelihood
estimates reported by Howard (2009).∗ In the bottom row of each figure, we report the posterior
mean estimates of the system parameters averaged over 4 chains initialized from the prior. The
wallclock time in seconds of each iteration was measured and the average per iteration was
reported. Here the first 5000 samples of each chain were discarded and then every third sample
was collected. Overall, we observe that the single-fidelity models can both be quite expensive;
while they are able to recover the posterior mean well, they require quite a bit more computation
than the multi-fidelity approach. Empirically, we observed roughly 1% of negative signs in our
experiments.

D.4. PDE-constrained optimization. In the problem setting, the spatial domain is [0, L]
and the time domain is [0, T ]. For our experiments, we chose L = 10 and T = 1.

To solve the PDE, we discretize the spatial domain into a grid of size ∆x: thus, we can consider
points x1, . . . , xI and u1(t), . . . , uI(t), where ui(t) = u(xi, t). Then, we represent the second
derivative using the central difference formula for the second degree derivative:

∂2u(x, t)

∂2x
≈
[
ui+1(t)− 2ui(t) + ui−1(t)

∆x2

]I
i=1

.

Thus, we now consider the system of equations (with the appropriate boundary conditions
imposed):

ui+1(t)− 2ui(t) + ui−1(t)

∆x2
=
dui(t)

dt
.

We solve the system with the Tsitouras 5/4 Runge-Kutta method, setting ∆t = 0.4∆x2 so as
to satisfy a CFL stability condition. Here the fidelity of the problem is given by the size of the
spatial discretization ∆x, which in turn controls the discretization of ∆t.

∗Our model is a modification of the one proposed in a Stan case study, which compares their Bayesian estimates
to the reported maximum likelihood results. See https://mc-stan.org/users/documentation/case-studies/
lotka-volterra-predator-prey.html for further discussion.

https://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html
https://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html
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(a) Marginal densities of system parameters

(b) Posterior mean estimate vs computational cost

Fig D.1: Lokta-Volterra system parameter identification with a 4th-order Runge Kutta ODE
solver. The fidelity represents (a function of) the step size of the ODE solver. Top: Marginal
distributions of system parameters. Bottom: Posterior mean estimates of the parameters vs
wallclock.
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The target temperature ū was constructed by solving the PDE with parameters α0 = 0.85
and β0 = 0.21. For the simulated annealing algorithm, we use a Metropolis-Hastings algorithm
as the base sampler; all methods used a truncated Normal proposal with scale set to 0.3 and a
logarithmic temperature schedule.

In the top row of Figure 5, we visualization the target ū solutions recovered by a number of
methods. The low-fidelity solution in target (c) is given by a crude step size of ∆x = 2; note that
we do not evaluate the cost of this given how poorly the solution is recovered at this state.

In the bottom row of Figure 5, we compare the MF-ESS approach with two single-fidelity step
sizes, ∆x = 5× 10−3, 1× 10−2. In the multi-fidelity method, the low-fidelity target sequence was
chosen using the discretization sequence ∆x(k) = 1/(k+ c), where c = 8. The results are averaged
over random seeds using the initialization [0, 0]. The horizontal dotted lines in each plot denote
the values of α0, β0, and we plot the current minimum at each iteration.

D.5. Gaussian process regression parameter inference. In many applications of GPs,
the goal is to integrate out the parameters θ via a Monte Carlo approximation that uses MCMC
to sample {θ(t)} from the target density

π∞(θ | D = (X, y)) ∝ π(θ)L∞(θ) = logNormal(θ | ν0, ν1)×N (y | 0,Σθ + σ20I). (D.5)

Note that the Gaussian pdf has the form

L∞(θ) = |2π(Σθ + σ20I)|−
1
2 exp

(
−1

2
y>(Σθ + σ20I)−1y

)
, (D.6)

and so when N is large, the linear system and determinant above become expensive.
Let the low-fidelity likelihood Lk(θ) denote the computation of the likelihood with k iterations

of (preconditioned) conjugate gradient. That is, suppose, z(k) is the kth iteration of the CG with
respect to the linear system (Σθ + σ20I)z = y. Thus, the low-fidelity likelihood is

Lk(θ) = |2π(Σθ + σ20I)|−
1
2 exp

(
−1

2
y>z(k)

)
.

In practice, the determinant also needs to be approximated with another low-fidelity computation.
Our goal here is to show a proof of concept, and so we only consider the linear system above;
however, we note that the determinant can be iteratively computed as a byproduct of conjugate
gradient as in Potapczynski et al. (2021). Note that we can compute the likelihood recursively
in that each z(k) reuses computation from the previous step z(k−1), and thus a Russian roulette
estimator also can reuse computation for each term in the sum.

We generate synthetic data from the GP model with N = 100, σ20 = 1, and lengthscale
θ0 = 45. For the GP model, we use the Log Normal prior on θ given above in Equation (D.5)
with parameters ν0 = 3.8, ν1 = 0.03. We compare several likelihoods: a high-fidelity likelihood
(K = 100), low-fidelity likelihood (K = 5), and the multi-fidelity approach we describe with
γ0 = 0.1. The low-fidelity likelihood sequence was constructed by computing the solution to
the linear system using a conjugate gradient solver with k steps. Finally, we also compare to
a two-stage M-H approach with k ∈ {100, 5}. For all methods, we use a M-H sampler with
T = 50000 iterations. The results are in Figure 6.
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