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Abstract

By simplifying complex real-world phenomena, probabilistic methods have proven able to accelerate

applications in discovery and design. However, classical theory often evaluates models under the

assumption that they are perfect representations of the observed data. There remains the danger

that these simplifications might sometimes lead to failure under real-world conditions. This disser-

tation identifies popular data analyses that can yield unreliable conclusions—and in some cases ones

that are arbitrarily unreliable—under such “misspecification.” But we also show how to practically

navigate misspecification. To begin, we consider clustering, a mainstay of modern unsupervised

data analysis, using Bayesian finite mixture models. Some scientists are interested not only in find-

ing meaningful groups of data but also in learning the number of such clusters. We provide novel

theoretical results and empirical studies showing that, no matter how small the misspecification,

some common approaches, including Bayesian robustness procedures, for learning the number of

clusters give increasingly wrong answers as one receives more data. But using imperfect models

need not be hopeless. For instance, we consider a popular Bayesian modeling framework for graphs

based on the assumption of vertex exchangeability. A consequence of this assumption is that the

resulting graph models generate dense graphs with probability 1 and are therefore misspecified for

sparse graphs, a common property of many real-world graphs. To address this undesirable scaling

behavior, we introduce an alternative generative modeling framework and prove that it generates

a range of sparse and dense scaling behaviors; we also show empirically that it can generate graphs

with sparse power law scaling behavior. Finally, we consider the case where a researcher has access

to a sequence of approximate models that become arbitrarily more complex at the cost of more

computation, which is common in applications with simulators of physical dynamics or models re-

quiring numerical approximations of some fidelity. In this case, we show how to obtain estimates

as though one had access to the most complex model. In particular, we propose a framework for

constructing Markov chain Monte Carlo algorithms that asymptotically simulates from the most

complex model while only ever evaluating models from the sequence of approximate models.
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Chapter 1

Introduction

Machine learning is transforming the sciences with new data-driven methods to accelerate scientific

discovery—from developing novel scientific understanding to suggesting new experiments or simula-

tions. Some key desiderata of computational methods in scientific applications include the ability to

incorporate scientific knowledge and theories into models, to learn interpretable, expressive repre-

sentations of complex observations, and to reliably quantify the uncertainty in a method’s output.

Probabilistic machine learning provides a powerful framework for tackling these desiderata, as it

is natural to encode scientific domain knowledge in models, extract interpretable, low-dimensional

latent structure, and quantify and propagate uncertainty for application in downstream tasks such

as prediction, inference, or decision making using statistical inference algorithms.

However, a number of challenges remain for reliably using these methods in modern scientific

problems. Crucially, probabilistic methods operate on the assumption that the model is correct.

Complex models are often necessary to accurately learn about sophisticated real-world phenom-

ena, but even with careful model checking, some amount of model misspecification is inevitable.

Additionally, probabilistic inference in scientific applications is often expensive due to costly exper-

imental measurements, high-fidelity physical simulations, or massive data sets. This necessitates

the application of approximate inference algorithms to fit these models. For instance, in variational

Bayesian inference, an approximating family to the posterior is used; in models of physical systems,
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Figure 1.1.1: Schematic of well-specified and misspecified models.

simplified assumptions may be needed for computational reasons; or the complexity of the problem

may require numerical approximations or data summarization algorithms.

Probabilistic inference and resulting downstream tasks are an important part of decision making—

by scientists, engineers, doctors, and policy makers—that have the potential to drastically affect

individuals’ livelihoods. Thus, it increasingly important to develop reliable data analysis tools that

account for misspecification and are computationally efficient.

1.1 A cartoon of probabilistic modeling

A probabilistic generative model is, of necessity, a simplification of the complex real-world phenomena

that govern any observed data, and in many cases facilitates tractable data analysis and discovery

of meaningful and actionable patterns in data. But typically any model of a real-world data set is

misspecified. In particular, some types of misspecification can be dangerous, in that they may lead

to fundamentally inaccurate or misleading inferences. Thus, it is crucial to understand what types of

misspecification are leading to useful inferences, and what types of misspecification are problematic.

In Figure 1.1.1, we show a schematic that represents one modeling setting we consider in this

dissertation. Here M (red box) depicts a space of probability measures on some set of interest. The

7



data analyst specifies a set of models P (gray box) that is some subset of this space. We assume

there is some true, unknown data generating distribution p0. When p0 is contained in the class of

models P, we say the model is well-specified ; otherwise, the model is misspecified.

In this dissertation, we consider a few main types of misspecification: 1) Bayesian models under

likelihood misspecification, 2) Bayesian models under prior misspecification, and 3) approximate

Bayesian models due to limited computation. In what follows, we will discuss each of these types

of misspecification in more depth, and give an overview of case studies that we expand on in later

chapters of the dissertation.

1.2 Bayesian models under likelihood misspecification

One type of misspecification in Bayesian models is that of the specification of the likelihood. In

this dissertation, we consider one particular example of likelihood misspecification. Latent variable

models—such as (ad)mixture models and latent factor models—are applied widely in a number

of scientific domains, such as genomics, neuroscience, and astronomy, to automatically discover

scientifically interpretable structure in high-dimensional data by modeling the latent subpopulations

(e.g., cell types or genetic subpopulations) from which the data are generated. However, the models

are sensitive to the specification of the distribution of these subpopulations, which can lead to

misleading inferences of important quantities of interest ranging from the properties of the latent

subpopulations to the number of latent subpopulations.

A particular problem scientists and engineers are often interested in is learning the number of

subpopulations, or components, present in a data set. A common suggestion is to use a finite mixture

model (FMM) with a prior on the number of components, e.g., a geometric or Poisson distribution.

Past work has shown the resulting distribution on the number of components is consistent; i.e.,

the FMM component-count posterior is consistent; that is, the posterior concentrates on the true,

generating number of components. But consistency requires the assumption that the component

likelihoods are perfectly specified, which is unrealistic in practice.

Indeed, empirical evidence from past work has shown that finite mixture models are sensitive to
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(a) Component family misspecification in a mixture. (b) Example of ε-contamination.

Figure 1.2.1: Example of model misspecification in finite mixture models for clustering.

the specification of the likelihood (Miller and Harrison, 2018) and often overestimate the number of

components (Frühwirth-Schnatter, 2006). Figure 1.2.1a illustrates an example of misspecification in

a finite mixture model, where there is some true data generating distribution p0 that generated the

data, for instance, a finite mixture of Gaussian distributions (or in this example a single Gaussian),

but the data analyst specifies a model that is a mixture of the Laplace component family. Intuitively,

the posterior will pick up on small clusters due to misspecification, and it may be unsurprising that

this particular example has issues. But one might also wonder: what is the behavior of the posterior

if the model is just a little bit misspecified? For instance, suppose the data analyst specifies a

model given by a finite mixture of Gaussians but the true data generating distribution is a small

ε-contamination of this model, i.e., p0 = (1− ε)p+ εq, where p is an element of our model class, and

q is some other distribution (Figure 1.2.1b).

Furthermore, there are a number of other related questions the data analyst might ask when

trying to improve the specification of a finite mixture model:

• What is the behavior of the posterior under a different prior in our model?

• What happens if we use a Bayesian robustness procedure, such as a power posterior?

In Chapter 3, we address these questions in depth. First, we show that under an arbitrarily
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small amount of component misspecification, the posterior number of components diverges : i.e., the

posterior probability of any particular finite number of components converges to 0 in the limit of

infinite data. This result adds rigor to existing data-analysis folk wisdom, and contrary to intuition,

posterior-density consistency is not sufficient to establish this result. In particular, this chapter

develops novel sufficient conditions that are more realistic and easily checkable than those common

in the asymptotics literature, and we introduce a new proof technique that is broadly useful beyond

this application.

Finally, we explore the behavior of finite mixtures under a number of related models, such as a

model with a prior that varies with the data or one where the prior has support on a finite number

of components. We also begin to investigate robustness procedures for likelihood misspecification.

One popular type of robustness procedure is the power posterior, where the likelihood is raised to a

fixed power in (0, 1). We show that in this case, the (power) posterior number of components still

diverges, and we discuss generalizations to other robustness procedures. Throughout this chapter,

we investigate posterior divergence empirically on a number of simulated data examples as well as

in applications on cancer and mouse gene expression data and astronomy data of galaxy velocities.

1.3 Bayesian models under prior misspecification

Another type of misspecification in Bayesian models due to the specification of the prior. One way

in which this misspecification manifests in nonparametric Bayesian models—such as models for

modeling latent clusters and features (Campbell et al., 2018) in discrete data—is in terms of the

resulting properties of the data generated under a model, such as scaling behavior with respect to

the number of data points. In this dissertation, we consider misspecification in generative models for

graphs and their scaling behavior (e.g., the number of edges in the graph as the number of vertices

grows).

Graph-structured observations are ubiquitous in scientific domains such as biology, ecology,

chemistry, physics, and epidemiology. One goal in developing generative models for graphs is to be

able to generate graphs that can capture properties of real-world graphs, such as particular scaling
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(a) Sample from a stochastic block model. (b) Sample from a vertex popularity model.

Figure 1.3.1: Example graphs generated under two different Bayesian models.

behaviors or particular network structure and symmetries. However, many popular models for graphs

do not capture real-world scaling properties of interest. For instance, many Bayesian generative

models for network data have been proposed that rely on the seemingly innocuous assumption of

(vertex) exchangeability, in which the distribution of the graph is invariant to relabelings of the

vertices. In particular, the Aldous–Hoover theorem implies that exchangeable graph models generate

dense graphs with probability one (Orbanz and Roy, 2015); thus, such generative graph models

are misspecified for sparse networks. Here, we say a graph is dense if the number of edges in the

graph grows asymptotically as the square of the number of vertices in the graph. By contrast, we

say a graph is sparse if the number of edges grows sub-quadratically as a function of the number of

vertices in the graph. This disconnect between desired asymptotic behavior and model specifications

motivates the development of new models that achieve sparsity rather than always generating dense

graphs.

In Chapter 4, we consider an alternative modeling assumption, edge exchangeability, in which

the distribution of a graph sequence is invariant to the order of the edges. We prove that edge-

exchangeable models, unlike models that are traditionally vertex exchangeable, can exhibit sparsity.

To do so, we introduce a class of vertex popularity generative models that are particularly convenient

for inference (Campbell et al., 2018); Figure 1.3.1b visualizes a sample from one such generative
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model. We verify our theoretical results through simulations and show that a particular class of

models under this framework generates a range of sparse and dense scaling behaviors, in addition to

power laws.

Finally, we note that the results in Chapter 4 complement a rich literature on nonparametric

Bayesian models and their scaling behaviors in a number of other domains. For instance, Gnedin

et al. (2007) have thoroughly characterized a wide variety of power laws that may be exhibited in

clustering models and have, moreover, shown that many of these power laws are equivalent. One

behavior of interest is a power law in the number of clusters as the number of data points grows.

This behavior is roughly analogous to considering a power law in the number of edges as the number

of vertices grows. But Gnedin et al. (2007) consider a much wider range of potential power laws.

Likewise, Broderick et al. (2012) have enumerated a range of power laws for feature allocations, a

generalization of clustering where each data point may belong to any non-negative integer number

of groups—now called features instead of clusters.

Not only have previous authors studied power laws for clustering and feature allocations, but

they have detailed particular, practical generative models for achieving these power laws—and these

models typically lead to corresponding inference algorithms as well. For instance, the canonical

power law model for clustering is the Pitman–Yor process (Goldwater et al., 2005; Pitman and Yor,

1997; Teh, 2006), and the canonical power-law model for feature allocations is the three-parameter

beta process (Broderick et al., 2012; Teh and Görür, 2009). Inspired by known power laws in

partitions (Gnedin et al., 2007) and feature allocations (Broderick et al., 2012), in Chapter 4, we

develop new generative graph models that exhibit desirable asymptotic and power law behaviors.

1.4 Misspecification due to limited computation

Under finite computational constraints and resources, the complexity of many modeling problems

necessitates the use of approximate inference algorithms, such as MCMC or variational inference,

along with other approximate algorithmic tools, such as numerical approximations or data summa-

rization algorithms (Cai et al., 2018). Thus, due to limited computation, the data analyst is fitting

12



a misspecified model by design.

For instance, in variational inference, it is common to choose a simpler, tractable variational

family as an approximation to the specified posterior. Many recent methods have been developed to

facilitate variational inference in more expressive variational families; see Zoltowski et al. (2021) and

references within for an overview. Another example occurs in many scientific applications, where

expensive computations are needed to obtain accurate answers, e.g., a complex physical simulation

or costly experiments (Gundersen et al., 2021; Jones et al., 2022, 2023). In these settings, it is

common to use approximate numerical methods and low-fidelity simulations in order to make the

problem tractable with existing inference algorithms. In this dissertation, we consider this problem

in more depth, where the goal is to use Markov chain Monte Carlo (MCMC) for inference.

MCMC is widely used for uncertainty quantification, simulation, and optimization. A key

challenge in applying MCMC to scientific domains is computation: the target density of interest is

often a function of expensive computations, such as a high-fidelity physical simulation, an intractable

integral, or an iterative algorithm. In these situations, MCMC quickly becomes impractical, as these

expensive computations need to be evaluated at each iteration of the algorithm, and in practice,

the target density uses a cheaper, low-fidelity computation, leading to bias in the resulting target

density.

In Chapter 5, we propose a class of asymptotically exact multi-fidelity MCMC algorithms (Cai

and Adams, 2022) for problems with a sequence of low-fidelity models available that approximate the

expensive target density of interest arbitrarily well, e.g., a decreasing sequence of discretization sizes

of a function. Using an auxiliary-variable strategy, the method uses a cheaper, randomized-fidelity

unbiased estimator of the target fidelity constructed via random truncation of a telescoping series

of the low-fidelity sequence of models. The key advantages of the approach are that it is easy to

implement for complex MCMC algorithms, such as slice sampling and Hamiltonian Monte Carlo,

and that Monte Carlo error is the only source of bias. Finally, we empirically demonstrate that the

method can lead to more accurate estimates with less computation in applications such as Bayesian

ODE system identification, PDE-constrained optimization, and Gaussian process modeling.
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(a) An example of approximate posteriors obtained from variational inference. Left: Target distribution;
Middle: Mean-field approximation; Right: A more expressive approximating family. Figure originally
from Zoltowski, Cai, and Adams (2021).

(b) Example of high- and low-fidelity models (middle, bottom rows, respectively) of an object from video
frames (top row) used to compute multi-fidelity posterior distributions for detecting changepoints in time
series data. The low-fidelity model is less accurate but cheaper to compute, and the high-fidelity model is
more accurate but more expensive to compute. Figure originally from Gundersen, Cai, Zhou, Engelhardt,
and Adams (2021).

Figure 1.4.1: Misspecification by design due to limited computation.

1.5 Dissertation organization and relevant publications

We begin by presenting an overview of some foundations of probabilistic modeling that are relevant to

later chapters in this dissertation (Chapter 2). Next we present several case studies of misspecification:

in Chapter 3, we present a case study of likelihood misspecification in finite mixture models based

on work; in Chapter 4, we present a case study of misspecification in graphs and their scaling

behavior, and in Chapter 5, we present a case study of approximate Bayesian models under limited

computation by proposing a general framework for MCMC in multi-fidelity models.

Several parts of this dissertation previously appeared in existing publications. Parts of Chapter 2
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are modified versions of text that originally appeared in Cai and Adams (2022); Cai and Broderick

(2015); Cai et al. (2014, 2016a,b, 2021). Chapter 3 builds on the results from Cai et al. (2020, 2021).

Chapter 4 previously was published in Cai et al. (2016a), and earlier versions previously appeared

in Cai and Broderick (2015) and Broderick and Cai (2015a,b). Chapter 5 is based on work from Cai

and Adams (2022).
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Chapter 2

Foundations of probabilistic modeling

In this chapter, we review several foundational ideas in probabilistic modeling that are referenced or

applied in later chapters of this dissertation. First, we review key ideas and tools for the analysis

of the posterior in the limit of infinite data (Section 2.1). Specifically, we provide an intuitive

introduction to the idea of posterior consistency; then we formally define posterior consistency;

and lastly, we review Schwartz’s theorem, one of the key tools for establishing consistency of the

posterior. In Section 2.2, we provide an overview on Bayesian generative models for graphs based on

tools from Bayesian nonparametrics. We provide background on graphons, which are an equivalent

characterization of the Aldous-Hoover theorem for exchangeable random graphs, and we also review

the generalization to directed graphs. Finally, we discuss completely random measures as a building

block for network modeling and tools for analyzing them. In Section 2.3, we review several classical

sampling algorithms for performing approximate Bayesian inference.

2.1 Posterior consistency: an overview

In statistical estimation, one of the goals is to compute an estimator θ̂N of an unknown parameter θ.

One of the most basic properties one might then check for is if the estimator is consistent : that is,

as the number of data points N increases, does the estimator converge to the true parameter?
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In a Bayesian analysis, one of the central goals is to compute a posterior distribution ΠN of a

parameter of interest θ given N data points, and analogous ideas of consistency for the posterior

have been formulated to serve as a check on a Bayesian analysis. In particular, posterior consistency

is the idea that as the number of data observations N grows, the posterior distribution concentrates

on neighborhoods of the true data parameter (or generating distribution).

In this section, we will make precise what it means for the posterior to “concentrate” and be

consistent – here as the number of data points goes to infinity, the posterior mass on densities

arbitrarily close to the true density will converge to 1. Then we will present Schwartz’s theorem,

one of the primary foundational tools for establishing posterior consistency.

2.1.1 An informal picture of Bayesian consistency

Suppose the true data generating distribution of the data—which is unknown to the data analyst—is

from a standard Gaussian with density N (· | 0, 1). The data analyst decides to model the data as

i.i.d. from the family

P = {N (· | θ, 1) : θ ∈ R}

and places a Gaussian prior on the unknown parameter θ. What happens to the posterior distribution

as we get more and more data? The hope is that if one has access to an infinite data generator,

the data analyst should be able to recover the “truth”; we will assume there is a true parameter θ0

(and corresponding density p0) that generated the data. Posterior consistency—which is when the

posterior has the property of “concentrating” around the true generating value as the number of

data points converges to infinity—formalizes this idea. Before defining posterior consistency, we first

build intuition by simulating the asymptotic behavior of posteriors under this model.

Simulating consistency. We can simulate and visualize the posterior for increasing number of

data set sizes for the example above (Figure 2.1.1). The model in the top panel assumes the prior

π0 = N (· | 1.5, 1), and the model in the bottom panel uses π0 = N (· | 1.5, 0.1). Here each of the

purple curves in Figure 2.1.1 represents a posterior density πN computed with more data, where

N1 = 5, N2 = 50, N3 = 100, and N4 = 3000 (darker curves represent larger N).
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(a) Prior with more mass near true parameter

(b) Prior with less mass near true parameter

Figure 2.1.1: Simulations of a conjugate Gaussian posterior density computed using increasing
numbers of data points generated from a standard Gaussian. The posterior mass becomes more
concentrated around the true parameter value as more data are observed.

When there is no data, only the prior is present (gray curve). With increasing number of data

points, the posterior mass around the true parameter value (indicated by the red dashed line)

becomes more concentrated.

While the priors in these examples do not affect asymptotic property of consistency, it does

affects how quickly the posteriors converge. Comparing the top and bottom panel of Figure 2.1.1,

we observe that the top panel, which has more prior mass near the true parameter value, converges

more quickly.

What happens if the posterior does not concentrate on at the true generating parameter? We

show two examples in Figure 2.1.2, where the models are misspecified, i.e., p0 /∈ P . In both examples,
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(a) True density p0 = N (· | 0, 10).

(b) True density p0 = LN (· | 0, 1).

Figure 2.1.2: Examples of inconsistency of the posterior.

the posterior on θ does not concentrate on the true data generating θ0.

Cartoon of more general consistency. In the previous example, we visualized the prior and

posteriors in a finite-dimensional parameter space Θ. More generally, we can consider some true

density p0 that lives in the model space P and a prior on the model space. For instance in the

example above, the prior on Θ induces a prior distribution Π0 on the space P = {N(· | θ, 1) : θ ∈ R},

and the true density p0 = N(· | 0, 1) is an element of P.

Figure 2.1.3 shows a cartoon schematic illustrating posterior concentration around p0. Here the

gray area represents the space of models (densities) given by P, and the bulk of the posterior mass

gets more tightly concentrated around the true density with more observations, as illustrated by the
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Figure 2.1.3: Cartoon schematic illustrating the posterior mass (blue circle) concentrating around
the true density p0 as the number of data points increases. The gray box incidates the space of
possible models P on X.

shrinking blue circles.

2.1.2 Preliminaries: the topology of weak convergence

In this dissertation, we will focus on convergence with respect to the weak topology. Throughout

our discussion, we assume that X is a Polish space metrized by ρ. Let P(X) denote the space of

probability measures on X.

We begin by considering the Lévy-Prokhorov metric as one particular choice for ρ.

Definition 2.1.1. Let f, g ∈P(X). The Lévy-Prokhorov metric is defined as

ρ(f, g) = inf{ε > 0 : f(A) < g(Aε) + ε, g(A) < f(Aε) + ε},

where Aε := {y : ρ(x, y) < ε for some x ∈ A}.

The Lévy-Prokhorov metric ρ is notable because it induces the weak topology on P(X).

Definition 2.1.2 (Weak convergence). A sequence of measures fi ∈ P(X) converges weakly to

f ∈P(X) if ρ(fi, f)→ 0, as i→∞. Let fi ⇒ f denote weak convergence.

The Portmanteau theorem (Ghosal and van der Vaart (2017, Theorem A.2)) characterizes equiv-

alent notions of weak convergence, and below we include the relevant portions of the Portmanteau
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theorem used in later chapters.

Theorem 2.1.3 (Portmanteau (partial statement)). The following statements are equivalent for

any fi, f ∈P(X):

1. fi ⇒ f .

2. For all bounded, uniformly continuous h : X→ R,

∫
hdfi −→

∫
hdf.

3. For every closed subset C,

lim sup
i

fi(C) ≤ f(C).

Another useful result is Prokhorov’s theorem (Ghosal and van der Vaart, 2017, Theorem A.4),

which characterizes weakly compact subsets of P(X) in terms of a tight subset of measures.

Definition 2.1.4. A subset Γ ⊆ P(X) is tight if for any ε > 0, there exists a compact subset

Kε ⊆ X such that for every ψ ∈ Γ, ψ(Kε) ≥ 1− ε.

Theorem 2.1.5 (Prokhorov). If X is a Polish space, then Γ ⊆P(X) is relatively compact if and

only if Γ is tight.

2.1.3 The posterior distribution and consistency

We consider a class of models M (X) ⊆ P(X), and we assume M (X) is dominated by a σ-finite

measure µ. In particular, define the model class of densities P by

P =

{
df

dµ
: f ∈M (X)

}
.

Let Π be a prior distribution on P, and consider the following generative model for the data

21



observations X1:N := X1, . . . , XN :

p ∼ Π

X1, . . . , XN | p i.i.d.∼ p.

Under mild regularity conditions on the topology of P1, the posterior distribution exists. Using

Bayes’s formula, a version of the posterior distribution is given by

Π(A |X1:N ) =

∫
A

∏N
n=1 p(Xn) dΠ(p)

∫
P
∏N
n=1 p(Xn) dΠ(p)

, A ⊆ P measurable. (2.1)

Below, we provide a definition of posterior consistency with respect to general neighborhoods.

Let f (N)
0 denote the joint distribution with respect to N observations2.

Definition 2.1.6. The posterior distribution Π(· |X1:N ) is consistent at p0 ∈ P if for every

neighborhood U of p0, with f
(∞)
0 -probability 1,

Π(U |X1:N )
N→∞−→ 1. (2.2)

For the rest of this discussion, we may overload the notation f0 to denote the joint distribution

with respect to N observations, and we use a.s. as a shorthand for almost surely.

Remark 2.1.7. We note that there are several alternative definitions of posterior consistency.

In some cases, the definition is stated in terms of convergence in probability (as opposed to a.s.

convergence) or consistency defined explicitly with a specific topology in mind. In this chapter, we will

assume the topology of weak convergence, and will refer to the above definition as weak consistency.

However, we note that in the literature, the terminology “weak” and “strong” consistency have been

used for both the type of convergence of the posterior (i.e., convergence in probability versus a.s.

convergence (Ghosal and van der Vaart, 2017)) and to refer to the topology (i.e., weak topology vs

strong topology).
1A sufficient condition is that P is Polish.
2Define this quantity to be the i.i.d. product measure defined on (XN ,BN ).
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2.1.4 Schwartz’s theorem for weak consistency

Schwartz’s theorem (Schwartz, 1965) is one tool for establishing consistency at the true density with

respect to the weak topology. The result is a posterior consistency theorem for the density, and thus

relies on the assumption that the space of models P is dominated by a σ-finite measure µ.

Let KL(p; q) denote the Kullback-Leibler (KL) divergence between p and q.

Theorem 2.1.8 (Schwartz). Let Π be a prior on P, and suppose that for any ε > 0,

Π({p ∈ P : KL(p0; p) < ε}) > 0.

Then the posterior is weakly consistent at p0: i.e., for any weak neighborhood U of p0 the sequence

of posterior distributions satisfies

Π(U |X1:N )
N→∞−→ 1, f0-a.s. (2.3)

Theorem 2.1.8 is remarkable in that one only needs to verify that p0 is in the KL-support of the

prior Π. Intuitively, the KL-support condition guarantees that the prior distribution places positive

mass on models arbitrarily close to p0. When more information is known about how much mass

the prior puts on models near p0, stronger results in terms of contraction rates can be derived. For

instance, in Figure 2.1.1, we consider the same Gaussian family as before but under different priors.

The model in Figure 2.1.1a, which has prior more mass near the true value, concentrates faster than

the model in Figure 2.1.1b with respect to the number of data points N .

The above result assumes that the prior Π is fixed. Note that weak consistency also holds (with

f0-probability) for priors that vary with N , provided that the sequence ΠN satisfies the KL-support

condition stated in Definition 3.5.1 (Ghosal and van der Vaart, 2017, Theorem 6.25).

2.1.5 A general version of Schwartz’s theorem

Theorem 2.1.8 is a result with respect to the weak topology. More general versions of the theorem

with respect to general neighborhoods have also been proven. Below, we discuss one such version
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(Ghosh and Ramamoorthi, 2003).

Theorem 2.1.9 (Schwartz (general)). Let Π be a prior on P, and suppose the following two

conditions hold:

1. p0 is in the KL-support of the prior: for any ε > 0, Π({p ∈ P : KL(p0; p) < ε}) > 0.

2. Existence of a uniformly consistent sequence of tests: there exist test functions φN : XN → [0, 1]

such that

f
(N)
0 (φN ) :=

∫
φN df

(N)
0

N→∞−→ 0,

sup
p∈Uc

f (N)(1− φN ) := sup
p∈Uc

∫
(1− φN ) df (N) N→∞−→ 0.

Then the posterior is consistent at p0: i.e., for any neighborhood U of p0 the sequence of posterior

distributions satisfies

Π(U |X1:N )
N→∞−→ 1, f0-a.s. (2.4)

Theorem 2.1.9 has a new condition in addition to the KL-support condition in Theorem 2.1.8:

i.e., there exists a uniformly consistent sequence of tests. Intuitively, the second condition of

Theorem 2.1.9 is that “the hypothesis H0 : p = p0 should be testable against complements of

neighborhoods of p0, i.e., H1 : p ∈ U c” (Ghosh and Ramamoorthi, 2003). The interpretation of the

test φN is that the null hypothesis H0 : p = p0 is rejected with probability φN . Given the joint

distribution f (N), then the interpretation of f (N)φN is the probability of rejecting H0 when the

data are sampled from P .

Note that due to the difficulty in directly verifying the uniformly consistent test condition, these

conditions themselves are often not directly checked. Some equivalent conditions are given in Ghosh

and Ramamoorthi (2003, Proposition 4.4.1).

As we will see in the next section, the testing condition of Schwartz’s theorem is satisfied by

weak neighborhoods. But for strong consistency with respect to the L1 metric, uniformly consistent
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tests do not exist (Barron, 1989; LeCam, 1973). However, it is still possible to have strong posterior

consistency hold via an extension of Schwartz’s theorem; Barron (1988) proved a early result on

this, and Ghosal and van der Vaart (2017, Theorem 6.17) presents an extended Schwartz theorem

that can be used to recover the classical Schwartz theorem as well as other consistency results based

on metric entropy. In addition, Schwartz’s theorem has been extended to other related models, such

as priors that vary with the data, misspecified models, and non-i.i.d. models.

2.1.6 The weak topology satisfies the Schwartz testing condition

Three situations in which a uniformly consistent sequence of tests exist are (1) under the weak

topology, (2) when the sample space is countable, and (3) when the parameter space of the model is

finite-dimensional (Ghosal and van der Vaart, 2017, Chapter 6). We now discuss the first example,

which recovers Theorem 2.1.8: under the weak topology, the tests needed for the Schwartz condition

exist. Thus, provided the KL-support condition holds, the posterior is consistent.

To establish weak posterior consistency, we need to show that for any weak neighborhood U of

p0,

Π(U c|X1:N )
N→∞
−→ 0, f

(∞)
0 -a.s., (2.5)

and so we will verify the testing condition with respect to the complement U c. To do so, we will

verify the condition for a simpler set, which turns out to be sufficient.

A µ-weak neighborhood U of p0 is a subset of P that can be represented by arbitrary unions of

basis elements, given by subsets of the form

V =

{
p ∈ P : ∀i ∈ {1, . . . , k},

∣∣∣∣
∫
gipdµ−

∫
gip0dµ

∣∣∣∣ < εi

}
, (2.6)

where for all i, gi is a bounded, real-valued, continuous function on X, εi > 0, and k ∈ N.

Note that each basis element V can be expressed as a finite intersection of subbasis elements, or
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subsets of the form

Vi =

{
p ∈ P :

∣∣∣∣
∫
gipdµ−

∫
gip0dµ

∣∣∣∣ < εi

}
, (2.7)

which is an intersection between two sets of the form: Ai =
{
p ∈ P :

∫
gipdµ <

∫
gip0dµ+ εi

}
.

Thus, the sets of the form Ai also form a subbasis for V , and the complement V c =
⋃2k
i=1A

c
i is

then a finite union of the complements of the subbasis elements above.

Since V ⊂ U by construction, we can decompose the posterior probability of the complement of

the weak neighborhood into a sum of probabilities over the complements of the subbasis sets:

Π(U c|X1:N ) ≤ Π(V c|X1:N ) ≤
2k∑

i=1

Π(Aci |X1:N ). (2.8)

Thus, in order to prove that Π(U c|X1:N )→ 0, (f
(∞)
0 -a.s.) as n→∞, it suffices to show that the

probability of the subbasis set complements vanish almost surely, i.e., for all i, Π(Aci |X1:N )→ 0 a.s.

We will now show the Schwartz testing condition holds for sets of the form

A =

{
p ∈ P :

∫
g(x) p(x) dµ(x) <

∫
g(x) p0(x) dµ(x) + ε

}
. (2.9)

Consider the test function

φn(X1, . . . , Xn) = I





1

n

n∑

i=1

g(Xi) >

∫
g(x) p0(x) dµ(x) + ε/2



 . (2.10)

Then the expectation of this test function can be bounded via Hoeffding’s inequality: that is,

since g is a bounded function (and without loss of generality, can be rescaled such that 0 ≤ g ≤ 1),

f
(n)
0 φN = f

(N)
0


 1

N

N∑

i=1

g(Xi) >

∫
g(x) p0(x) dµ(x) + ε/2


 ≤ e−Nε2/2. (2.11)

Similarly, another application of Hoeffding’s inequality along with the property that for any
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p ∈ Ac,
∫
g(x)p(x)dµ(x)−

∫
g(x)p0(x)dµ(x) > ε implies that

f (n)(1− φN ) ≤ f (N)


− 1

N

n∑

i=1

g(Xi) > −
∫
g(x) p(x) dµ(x) + ε/2


 ≤ e−Nε2/2. (2.12)

2.2 Bayesian nonparametrics and random graphs models

In recent years, network data has increased in both ubiquity and size. As network data appear in a

growing number of applications—such as online social networks, biological networks, and networks

representing communication patterns—there is growing interest in developing models and inference

for such data and studying its properties. In Chapter 4, we develop new random graph models and

study properties of random graphs generated under these models, and we review several foundational

concepts for that chapter in this section.

First, we briefly review exchangeable random graphs and the Aldous-Hoover theorem; our

perspective focuses on the equivalent characterization in terms of graphons due to Lovász and

Szegedy (2006). We also discuss exchangeable random directed graphs and the directed analog of

the Aldous-Hoover theorem, known also as digraphons, as a basis for generative graph models. A

consequence of the Aldous-Hoover theorem is that generative models for graphs with this assumption

will generate graphs that are dense or empty with probability 1.

In the remainder of this section, we provide an overview on completely random measures for

building generative models, which have been used extensively in models for clustering and feature

allocations. Finally, we present several tools for analyzing models using completely random measures.

In Chapter 4, we will use these tools to build and analyze new generative models as part of an

alternative modeling framework that is able to generate both sparse and dense graphs.

2.2.1 Exchangeable random graphs: undirected and directed graphs

We define a graph on [n] to be a graph with set of vertices [n] := {1, . . . , n}; its adjacency matrix is

the {0, 1}-valued n× n matrix (Gij)i,j∈[n], where Gij = 1 iff G has an edge between vertices i and j.

Graphs on N, and their adjacency matrices, are defined similarly. We write x d
= y when two random
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U2

U3

U1 U2 U3

0

1
W (U1, U2)

1

1

(a) left: An example of a graphon, given by the function W (x, y) = (1−x)+(1−y)
2

; right: Schematic of
sampling procedure.

(b) Samples from the finite random graphs of size 50, 100, and 500 shown as “pixel pictures” of the adjacency
matrix, where black corresponds to 1 and white to 0. The samples have been resorted by increasing order of
the sampled uniform random variables Ui.

Figure 2.2.1: Visualization of a graphon and the sampling procedure.

variables x and y are equal in distribution, and abbreviate almost surely and almost everywhere by

a.s. and a.e., respectively.

Many popular Bayesian models for graphs assume exchangeability, i.e., that the joint distribution

of the edges is invariant under permutations of the vertices.

Definition 2.2.1. A random array (Gij)i,j∈N is (jointly) exchangeable when

(Gij)
d
= (Gσ(i),σ(j)) (2.13)

for every permutation σ of N.

By the Kolmogorov extension theorem, it is equivalent to ask for the above condition to hold

only for those permutations σ that move a finite number of elements of N.
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We now define a sampling procedure that produces exchangeable graphs. In particular, founda-

tional Aldous-Hoover theorem (Aldous, 1981; Hoover, 1979) characterizes undirected exchangeable

graphs in terms of measurable functions, which can be equivalently characterized in terms of graphons

(Lovász and Szegedy, 2006).

Definition 2.2.2. A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1].

Given a graphon W , there is an associated countably infinite exchangeable graph G(N,W ) with

random adjacency matrix (Gij)i,j∈N defined as follows (see Figure 2.2.1):

Ui
iid∼ Uniform[0, 1] for i ∈ N,

Gij |Ui, Uj ind∼ Bernoulli(W (Ui, Uj)), for i < j,

(2.14)

and set Gji = Gij for i < j, and Gii = 0.

Figure 2.2.1 shows an example of sampling from the graphon W (x, y) = (1−x)+(1−y)
2 . As the

number of samples increases, the limiting structure of W becomes more clear in the resorted samples

(bottom row).

Every exchangeable undirected graph can be written as a mixture of such sampling procedures.

For n ∈ N, we write G(n,W ) to denote the finite random undirected graph on underlying set

{1, . . . , n} induced by this sampling procedure.

Theorem 2.2.3 (Aldous (1981); Hoover (1979)). Suppose G is an exchangeable graph on N. Then

G can be written as the mixture of W -random graphs G(N,W ) for some probability measure on

graphons W .

The Aldous-Hoover representation has since been extended to higher dimensions, more general

spaces of random variables, and weaker notions of symmetry; for a detailed presentation, see

Kallenberg (2005).

Since every exchangeable graph is a mixture of graphon sampling procedures, many network

models can be described in this way. The stochastic block model (Holland et al., 1983) is such an

example; it plays a special role as one of the simplest models that can approximate arbitrary graphon
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sampling procedures. Some Bayesian nonparametric models, including the eigenmodel (Hoff, 2007),

Mondrian process graph model (Roy and Teh, 2008), and random function model (Lloyd et al.,

2012) were built knowing the Aldous-Hoover representation. Furthermore, many other such models

are naturally expressed in terms of a distribution on graphons (Lloyd et al., 2012; Orbanz and Roy,

2015), including the infinite relational model (IRM) (Kemp et al., 2006) the latent feature relational

model (LFRM) (Miller et al., 2009), and the infinite latent attribute model (ILA) (Palla et al.,

2012).

We now consider the analogous ideas for directed graphs. In general, for a directed graph, (Gij)

may be asymmetric, and we allow self-loops, which correspond to values Gii = 1 on the diagonal.

Definition 2.2.4. A random (infinite) directed graph G on N is exchangeable if its joint distribution

is invariant under all permutations π of the vertices:

(Gij)i,j∈N
d
= (Gπ(i)π(j))i,j∈N. (2.15)

Such an array (Gij) is sometimes called jointly exchangeable. The case where the distribution is

preserved under permutation of each index separately, i.e., where (Gij)
d
= (Gπ(i)σ(j)) for arbitrary

permutations π and σ, is called separately exchangeable, and arises for adjacency matrices of bipartite

graphs.

As described by Diaconis and Janson (2008), using the Aldous-Hoover theorem one may show

that every exchangeable countably infinite directed graph is expressible as a mixture of G(N,W)

with respect to some distribution on digraphons W.

Definition 2.2.5. A digraphon is a 5-tuple W := (W00,W01,W10,W11, w), where Wab : [0, 1]2 →

[0, 1], for a, b ∈ {0, 1}, and w : [0, 1] → {0, 1} are measurable functions satisfying the following

conditions for all x, y ∈ [0, 1]:
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W00(x, y) = W00(y, x);

W11(x, y) = W11(y, x); (2.16)

W01(x, y) = W10(y, x);

W00(x, y) +W01(x, y) +W10(x, y) +W11(x, y) = 1.

Given a digraphon W, write W4 for the map [0, 1]2 → [0, 1]4 given by (W00,W01,W10,W11).

The functions Wab represent the joint probability of Gij = a and Gji = b for a, b ∈ {0, 1}, i.e.,

Pr(Gij = a,Gji = b) = Wab(Ui, Uj), (2.17)

conditioned on Ui and Uj . In this way, W00 determines the probability of having neither edge

direction between vertices i and j, W01 of only having a single edge to j from i (“right-to-left"), W10

of a single edge from i to j (“left-to-right"), and W11 of directed edges in both directions between i

to j. The function w represents the probability of Gii; because it is {0, 1}-valued, this merely states

whether or not i has a self-loop.3

The adjacency matrix (Gij)i,j∈N of a countably infinite random graph G(N,W) is determined

by the following sampling procedure:

1. Draw Ui
iid∼ Uniform[0, 1] for i ∈ N.

2. For each pair of distinct vertices i, j, assign the edge values for Gij and Gji according to an

independent Categorical(W4(Ui, Uj)) such that Equation (2.17) holds.

3. Assign self-loops Gii = w(Ui) for all i.

In other words, in step 2 we assign (Gij , Gji) |Ui, Uj ind∼ Categorical(W4(Ui, Uj)), where we interpret

the categorical random variable as a distribution over the choices (0, 0), (0, 1), (1, 0), (1, 1), in that

order. Note that step 2 is well-defined by the symmetry condition in Equation (2.16). Figure 2.2.2
3There is an equivalent alternative set of objects that may be used to specify an exchangeable digraph, where

W00,W01,W10,W11 are as before and p ∈ [0, 1] gives the marginal probability of a self-loop, which is independent of
the other edges; see Diaconis and Janson (2008) for details.
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W00(U1, U2) W01(U1, U2) W10(U1, U2) w(U1)W11(U1, U2)

(G12, G21) ⇠ Categorical(W4(U1, U2)) G11

P1
a,b=0 Wab(U1, U2) = 1

Figure 2.2.2: Schematic illustrating digraphon sampling procedure for W = (W00,W01,W10,W11, w).

illustrates this sampling procedure via a schematic. The x-axis is vertical and y-axis horizontal,

with (0, 0) in the upper left, so that the notation Wab(x, y) coheres with the usual (row, column)

convention for matrix indexing.

An analogous sampling procedure yields finite random digraphs: Given n ∈ N, in step 1, instead

sample only Ui for i ∈ [n]. Then determine Gij for i, j ∈ [n] as before. We write G(n,W) to denote

the random digraph thereby induced on [n].

Diaconis and Janson (2008) derived the following corollary of the Aldous-Hoover theorem for

directed graphs.

Theorem 2.2.6 (Diaconis–Janson). Every exchangeable random countably infinite directed graph is

obtained as a mixture of G(N,W); in other words, as G(N,W) for some random digraphon W.

Therefore the problem of specifying the distribution of an infinite exchangeable digraph may be

equivalently viewed as the problem of specifying a distribution on digraphons.

Most work involving priors on exchangeable graphs has focused on undirected graphs. For

directed graphs, much of the work has extended the undirected case by using a single asymmetric

measurable function Wasym : [0, 1]2 → [0, 1] to model the directed graph (see Orbanz and Roy (2015,

§4) for a survey of such models). While such an asymmetric function is appropriate for exchangeable

bipartite graphs (Diaconis and Janson, 2008), this representation cannot express all exchangeable

directed graph models (see Cai et al. (2016b) for a discussion).

The above theorem implies that exchangeable directed graphs are determined by specifying
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a distribution on digraphons. Indeed, a digraphon is a more complicated representation for ex-

changeable directed graphs than a single asymmetric measurable function; a digraphon describes

the possible directed edges between each pair of vertices jointly, rather than independently. In Cai

et al. (2016b), random digraphons are considered as a framework for Bayesian generative models for

directed graphs for a number of random structures such as directed acyclic graphs and tournaments.

2.2.2 Nonparametric Bayes and completely random measures

In Bayesian nonparametric modeling, we specify a random measure for the prior and likelihood,

and then compute a posterior measure. The popular Dirichlet process is an example of a random

(discrete probability) measure. The Dirichlet process is an example of normalized random measure

that can be obtained from normalizing a completely random measure, which we will now define.

Let (Ω,Σ) be a measurable space with Ω := V × R+ and Σ := ΣV × B(R+). In the context of

network modeling, V represents the space of vertices. A random measure W on (Ω,Σ) is a random

measure-valued element such that W (A) is a random variable for any measurable set A ∈ Σ.

Completely random measures provide an option for generating a countably infinite number of

atoms in our random measure W (Kingman, 1993).

Definition 2.2.7. A completely random measure W on (Ω,Σ) is a random measure with the

additional requirement such that for any finite, disjoint measurable sets A1, . . . , An ∈ Σ, the random

variables W (A1), . . . ,W (An) are (pairwise) independent.

Completely random measures can be constructed from a Poisson point process with rate measure

ν(dθ, dw) in the following way: if we draw a sample (θi, wi)i∈N from a Poisson point process, we

construct W as follows:

W =

∞∑

i=1

wiδθi .

All completely random measures can be obtained in this way (along with a deterministic component

and a fixed atomic component) (Kingman, 1993).
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Popular CRMs include the beta process, the gamma process, the Bernoulli process, and the

negative binomial process. A beta process B ∼ BP(c,B0) is a positive CRM whose rate measure

depends on a concentration c > 0 and the base measure B0 on V, which is fixed. The parameter

γ0 = B0(V) is called the mass parameter. If B0 is continuous, the rate measure is

ν(dv, dw) = cw−1(1− w)c−1dwB0(dv) (2.18)

on V × [0, 1]. A draw B ∼ BP(θ,B0) is a discrete random measure

B =

∞∑

i=1

wiδvi

as constructed from a Poisson point process in the standard way described above. Here wi ∈ [0, 1],

and
∑
i wi <∞ whenever B0 is finite. If B0 is discrete, i.e., B0 =

∑
i uiδvi , with ui ∈ [0, 1], then

B =
∑
i wiδvi has atoms at the same locations as B0, and the distribution of the weights are

wi ∼ Beta(θui, θ(1− ui)).

To generate from a beta process, a stick-breaking process can be used:

W =

∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1− V (`)
i,j ) δψi,j ,

Ci
iid∼ Pois(γ0),

V
(`)
i,j

iid∼ beta(1, γ0),

ψi,j
iid∼ 1

γ0
B0.

Let B be a discrete measure on Ω. A Bernoulli process, denoted by Y ∼ BeP(B), is characterized

by the rate measure

µ(dw, dv) = δ1(dw)B(dv).
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Then a draw from a Bernoulli process with hazard measure B is the discrete random measure defined

by Y =
∑
i yiδvi , where yi = 1 with Bernoulli probability wi. See Thibaux and Jordan (2007) for

additional details about the beta and Bernoulli processes.

In Chapter 4, we will consider a generalization of the beta process described above called the

three-parameter beta process, or alternatively, the stable beta process.

2.2.3 Tools for analyzing models with completely random measures

We present two useful theorems for analyzing expectations involving random sums of functions of

points from Poisson point processes. In Chapter 4, we will apply these theorems repeatedly to get

expectations of graph quantities that will be used to analyze the asymptotic scaling behavior of

particular generative models for graphs constructed using Poisson point processes and completely

random measures.

The first theorem is Campbell’s theorem, which is used to compute the moments of functionals

of a Poisson process. For additional details, we refer to Kingman (1993, Sec. 3.2) for details.

Theorem 2.2.8 (Campbell’s theorem). Let Π be a Poisson point process on S with rate measure ν,

and let f : S → R be measurable. If
∫
S

min(|f(x)|, 1) ν(dx) <∞, then

E


exp


c
∑

x∈Π

f(x)





 = exp

(∫

S

(exp(cf(x))− 1) ν(dx)

)

for any c ∈ C, and furthermore,

E


∑

x∈Π

f(x)


 =

∫

S

f(x) ν(dx).

The second theorem is a specific form of the Slivnyak-Mecke theorem, which is useful for

computing the expected sum of a function of each point x ∈ Π and Π \ {x} over all points in a

Poisson point process Π. If each point in Π is thought of as relating to a particular vertex in a graph,

the Slivnyak-Mecke theorem allows us to take expectations of the sum (over all possible vertices in
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the graph) of a function of each vertex and all its possible edges. For example, it is used below to

compute the expected number of active vertices by taking the expected sum of vertices that have

nonzero degree.

Theorem 2.2.9 (Slivnyak-Mecke theorem). Let Π be a Poisson point process on S with rate measure

ν, and let f : S × Ω→ R+ be measurable. Then

E


∑

x∈Π

f(x,Π \ {x})


 =

∫

S

E
(
f(x,Π)

)
ν(dx).

For additional details, we refer to Daley and Vere-Jones (2008, Prop. 13.1.VII) and Baddeley

et al. (2007, Thm. 3.1,Thm. 3.2).

2.3 Bayesian inference and sampling algorithms

In the previous sections, we discussed constructing and analyzing particular Bayesian models. To

compute the Bayesian posterior, approximate inference algorithms are often needed. In this section,

we review several Markov chain Monte Carlo (MCMC) algorithms that are referenced in later

chapters of this dissertation. We focus on reviewing the algorithms instead of the theory behind

MCMC.

In MCMC, the goal is to sample from a distribution π by constructing a Markov chain with

target density π(θ). We will assume that we may only be able to evaluate π up to a normalizing

constant. While in this section, we will consider a general distribution π, we are often interested in

applying MCMC in the specific setting of Bayesian inference, where π is the posterior:

π(θ |X1:N ) ∝ π0(θ)Lθ(X1:N ), (2.19)

where π0 is a prior density and Lθ is a likelihood function.
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Algorithm 2.3.1 Metropolis-Hastings iteration
1: Input: Current state θ, target density π, proposal distribution q
2: Propose new state θ′ ∼ q
3: Compute acceptance ratio

R = min

(
1,
π(θ′) q(θ|θ′)
π(θ) q(θ′|θ)

)
.

4: if rand < R then
5: Accept proposal θ′
6: else
7: Reject proposal and set θ′ = θ
8: end if
9: Output: New state θ′

2.3.1 Metropolis-Hastings and challenges

We begin by reviewing the classical Metropolis-Hastings (M-H) algorithm (Algorithm 2.3.1). In

the Metropolis-Hastings (M-H) algorithm, a new state θ′ is proposed according to a distribution q:

that is, draw θ′ ∼ q(· | θ), where θ is the current state. The proposed state is then accepted with

probability

min

(
1,
π(θ′) q(θ|θ′)
π(θ) q(θ′|θ)

)
.

If the proposal is rejected, the new state is set to the old value. The Gibbs sampling algorithm—in

which states are sampled in turn from their complete conditional distributions—is a special case of

the M-H algorithm.

While the M-H algorithm is simple to describe and to apply to a problem, there are several

reasons it can be difficult to use reliably in practice. The first challenge is choosing a suitable

proposal distribution q, which often requires extensive tuning. For instance, a common choice is

a proposal distribution of the form q(θ′|θ) = N (θ′|θ, τ), where the parameter τ is tuned carefully.

In Section 2.3.2, we describe slice sampling, an MCMC algorithm that does not have any tuning

parameters.

A second difficulty is that M-H may have difficulties converging in high dimensional problems.
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Many specialized MCMC algorithms have been proposed to to improve convergence by using other

available information. For instance, if the gradient of the unnormalized target density is available,

then Hamiltonian Monte Carlo (HMC) algorithm is a popular choice. In Section 2.3.3, we discuss

one particular algorithm that is useful for sampling problems with special latent Gaussian structure.

A third challenge occurs when π(θ) (or its unnormalized density) itself is expensive or intractable

to evaluate pointwise, this algorithm quickly becomes impractical. For example, if the likelihood

is a function of an intractable integral, the likelihood needs to be approximated numerically. In

Section 2.3.4, we describe a two-stage M-H algorithm that uses a low-fidelity model as a low pass

filter for early rejection. In Chapter 5, we describe an alternative algorithm that uses randomized

fidelity models that can be applied to more general MCMC algorithms.

2.3.2 Slice sampling

Slice sampling (Neal, 2003) is auxiliary-variable algorithm that automatically generates proposals

without the need for an explicit accept/reject step. As we discuss above, slice sampling does not

have any tuning parameters. Below, we describe the slice sampling algorithm in 1 dimension; one

iteration is detailed in Algorithm 2.3.2.

Given the current state θ, we first sample a uniform height u′ ∼ unif(0, π(θ)). A slice around the

state θ is constructed via a horizontal bracket (θl, θr), and a new state θ′ is proposed by sampling

from the slice. If π(θ′) > u′, the proposal is accepted; otherwise the size of the bracket is decreased.

There are many ways in which the bracket can be constructed and adapted. In Chapter 5, we

use the “stepping out” and “shrinking” procedures for generating and resizing the proposal bracket,

as defined in MacKay (2003, Chapter 29.7) and Algorithm 2.3.2. Finally, Neal (2003) describes

several ways in which slice sampling can be extended to multiple dimensions.

2.3.3 Elliptical slice sampling

Elliptical slice sampling (Murray et al., 2010) is algorithm used for inference in models with latent

high-dimensional Gaussian structure and is often applied to models with Gaussian processes. Like

the slice sampling algorithm described above, it requires no (or minimal) tuning.
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Algorithm 2.3.2 Slice sampling iteration

1: Input: Current state θ, (unnormalized) target density π
2: Sample a random height

u′ ∼ unif(0, π(θ))

3: Define a bracket (θl, θr) around θ, e.g., “stepping out”: r ∼ unif(0, 1)

θl = θ − rw
θr = θ + (1− r)w

while π(θl) > u′: θl = θl − w
while π(θr) > u′: θr = θr + w

4: Draw proposal θ′ ∼ unif(θl, θr)
5: if log π(θ′) > log u′ then
6: Accept proposal θ′
7: else
8: Resize bracket and generate new proposal, e.g., “shrinking”:
9: if θ′ > θ then:

10: θr = θ
11: else:
12: θl = θ
13: end if
14: Goto Step 4
15: end if
16: Output: New state θ′

Let θ ∼ N(0,Σ) denote the latent D-dimensional Gaussian variable of interest, and consider the

likelihood as a function of θ, L(θ) = p(X1:N | θ). The target density of interest is

π(θ) ∝ N (θ | 0,Σ)L(θ). (2.20)

We note that while this model assumes a mean-zero Gaussian prior, one can perform a change of

variables to obtain other priors.

The idea is to propose a new state θ′ by sampling from a proposal region on an ellipse that

passes through the current state θ and an auxiliary state ν:

θ′ = θ cosϑ+ ν sinϑ,
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Algorithm 2.3.3 Ellipitical slice sampling iteration

1: Input: Current state θ, log-likelihood L, covariance Σ (or its Cholesky decomposition)
2: Choose ellipse ν ∼ N (0,Σ)
3: Construct log-likelihood threshold:

u ∼ unif(0, 1), log y = logL(θ) + log u

4: Draw initial proposal for angle and define bracket

ϑ ∼ unif(0, 2π), [ϑmin, ϑmax] = [ϑ− 2π, ϑ]

5: Construct proposal θ′ = θ cosϑ+ ν sinϑ
6: if logL(θ′) > log y then
7: Accept proposal θ′
8: else
9: Resize bracket and generate new proposal:

10: if ϑ < 0 then:
11: ϑmin = ϑ
12: else:
13: ϑmax = ϑ
14: end if
15: ϑ ∼ unif[ϑmin, ϑmax]
16: Goto Step 5
17: end if
18: Output: New state θ′

where ϑ ∼ unif(0, 2π) and ν ∼ N (0,Σ). The proposal is accepted according to a likelihood threshold,

and if rejected, the proposal region is resized. The full algorithm is summarized in Algorithm 2.3.3.

2.3.4 Two-stage Metropolis-Hastings

As we described in Section 2.3.1, the M-H algorithm is impractical if π(θ) is expensive to evaluate

or intractable. The two-stage MH algorithm uses a low-fidelity likelihood LLF as a low-pass filter to

avoid the evaluation of an expensive high fidelity likelihood LHF. In each iteration t, a proposal θ′

is generated from the proposal distribution q(·|θ(t−1)). The algorithm the proceeds in the following

two stages.
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Stage 1: The proposal is accepted for the second stage according to the acceptance probability

RLF(θ; θ′) = min

(
1,
π(θ′)LLF(θ′)q(θ|θ′)
π(θ)LLF(θ)q(θ′|θ)

)
, (2.21)

where θ = θ(t−1). If the proposal is rejected, then the value θ(t) = θ(t−1).

Stage 2: In the second stage, the proposal θ′ is accepted with probability

RHF(θ; θ′) = min

(
1,
π(θ′)LHF(θ′)Q(θ|θ′)
π(θ)LHF(θ)Q(θ′|θ)

)
, (2.22)

where the proposal distribution Q satisfies

Q(θ′|θ) = R(θ′, θ)q(θ′|θ) +

(
1−

∫
R(θ, θ′)q(θ′|θ)dθ′

)
δθ(θ

′). (2.23)

Note that in the algorithm, the integral does not need to be explicitly computed, since if θ = θ′, the

chain remains at the same value, and if θ 6= θ′, then Q(θ′|θ) = RLF(θ; θ′)q(θ′|θ). Furthermore, the

high-fidelity acceptance probability can be computed as

RHF(θ; θ′) = min

(
1,
LHF(θ′)LLF(θ)

LHF(θ)LLF(θ′)

)
. (2.24)

If the proposal is accepted, then the value θ(t) = θ′, and otherwise, θ(t) = θ(t−1).

2.3.5 Simulated annealing

Finally, we note that MCMC is often used for optimization. In simulated annealing, the goal is to

sample from some distribution P (θ) ∝ exp(−E(θ)), where E(θ) is an energy function. If used for

optimization, E(θ) is the function we are interested in minimizing. In the simplest simulated annealing

case, we instead sample from the annealed distribution π(θ) ∝ exp(−E(θ))
1
T = exp(−E(θ)/T ).
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Chapter 3

Finite mixture models do not reliably

learn the number of components

Scientists and engineers are often interested in learning the number of subpopulations (or components)

present in a data set. A common suggestion is to use a finite mixture model (FMM) with a prior on

the number of components. Past work has shown the resulting FMM component-count posterior is

consistent; that is, the posterior concentrates on the true, generating number of components. But

consistency requires the assumption that the component likelihoods are perfectly specified, which

is unrealistic in practice. In this chapter, we add rigor to data-analysis folk wisdom by proving

that under even the slightest model misspecification, the FMM component-count posterior diverges :

the posterior probability of any particular finite number of components converges to 0 in the limit

of infinite data. Contrary to intuition, posterior-density consistency is not sufficient to establish

this result. We develop novel sufficient conditions that are more realistic and easily checkable than

those common in the asymptotics literature. We illustrate practical consequences of our theory on

simulated and real data.
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3.1 Introduction

Mixture modeling is a mainstay of statistical machine learning. In applications where the number of

mixture components is unknown in advance, a principal inferential goal is to estimate and interpret

this number. For example, practitioners might wish to find the number of latent genetic populations

(Huelsenbeck and Andolfatto, 2007; Lorenzen et al., 2006; Pritchard et al., 2000; Tonkin-Hill et al.,

2019), gene tissue profiles (Medvedovic and Sivaganesan, 2002; Yeung et al., 2001), cell types (Chan

et al., 2008; Prabhakaran et al., 2016), microscopy groups (Griffié et al., 2016; Rubin-Delanchy et al.,

2015), haplotypes (Xing et al., 2006), switching Markov regimes in US dollar exchange rate data

(Otranto and Gallo, 2002), gamma-ray burst types (Mukherjee et al., 1998), segmentation regions

in an image (e.g., tissue types in an MRI scan (Banfield and Raftery, 1993)), observed humans

in radar data (Teklehaymanot et al., 2018), basketball shot selection groups (Hu et al., 2020), or

communities in a social network (Geng et al., 2019; Legramanti et al., 2020).

A natural question then is: can we reliably learn the number of latent groups in a data set? To

make this question concrete, we focus on a Bayesian approach. Consider the case where the true,

generating number of components is known. A natural check on a Bayesian mixture analysis is to

establish that the Bayesian posterior on the number of components increasingly concentrates near

the truth as the number of data points becomes arbitrarily large. In the remainder, we will focus on

this check—though our work has practical implications beyond Bayesian analysis.

A standard Bayesian analysis uses a component-count prior with support on all strictly-positive

integers (Miller and Harrison, 2018). Nobile (1994) has shown that the component-count posterior

of the resulting finite mixture model (FMM) does concentrate at the true number of components.

But crucially, this result depends on the assumption that the component likelihoods are perfectly

specified. In every application we have listed above, the true generating component likelihoods do

not take a convenient parametric form that might be specified in advance. Indeed, some form of

misspecification, even if slight, is typical in practice. So we must ask how the component-count

posterior behaves when the component likelihoods are misspecified.

Data science folk wisdom suggests that when component likelihoods are misspecified, mixture
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(a) Mouse single-cell RNA-seq data (b) Lung tissue gene expression data

Figure 3.1.1: Posterior probability of the number of components k for Gaussian mixture models,
fit to (a) mouse cortex single-cell RNA sequencing data and (b) lung tissue gene expression data.
Details in Section 3.8.2.

models will tend to overestimate the number of clusters; see, e.g., Section 7.1 of Frühwirth-Schnatter

(2006). This overestimation is apparent in Figure 3.1.1, which shows the component-count posterior

of a Gaussian mixture model applied to two example gene expression data sets (de Souto et al.,

2008; Prabhakaran et al., 2016). In fact, Figure 3.1.1 demonstrates an effect far worse than just

overestimation: the posterior distribution appears to concentrate for any (large enough) fixed

amount of data, but actually concentrates on increasing values as more data are observed. Therefore,

inference is unreliable; the practitioner may draw quite different conclusions depending on how large

the data set is.

In the present chapter, we add rigor to existing data science folk intuition by proving that this

behavior occurs in a wide class of FMMs under arbitrarily small amounts of misspecification. We

examine FMMs with essentially any component shape—where we make only mild, realistic, and

checkable assumptions on the component likelihoods. Notably, we include univariate and multivariate

Gaussian component likelihoods in our theory, but do not restrict only to these shapes. We show

that under our assumptions and when the component likelihoods are not perfectly specified, the

component-count posterior concentrates strictly away from the true number of components. In fact,

we go further to show that the FMM posterior for the number of components diverges: for any
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finite k ∈ N, the posterior probability that the number of components is k converges to 0 almost

surely as the amount of data grows.

We start by introducing FMMs and stating our main result in Section 3.2. We discuss our

assumptions in more detail in Section 3.3 and prove our result in Section 3.4. In Section 3.5 we

extend our main theorem to priors that may vary as the data set grows. We discuss related work

below and in Section 3.7. The chapter concludes in Section 3.8 with empirical evidence that the

FMM component-count posterior depends strongly on the amount of observed data. Our results

demonstrate that, in practice, past estimates of component number may have strongly depended on

the size of a particular data set.

Filling a gap in the literature. While recent work has established various asymptotic

properties of mixture models, we observe that our results here are not trivial extensions of existing

research. First note that, intuitively, as the number of data points grows, the posterior concentrates at

the generating density (Ghosal and van der Vaart, 2017; Ghosh and Ramamoorthi, 2003; Schwartz,

1965), which can be well-approximated by an infinite mixture due in part to misspecification.

However, posterior consistency for the density alone is not enough to guarantee consistency for

the model parameters; parameter consistency may not hold under, for instance, a discontinuous

mapping from the component parameter to the component density.

Second, note that posterior divergence for the number of components could, in principle, be

obtained if parameter consistency for the mixture holds. But existing results on parameter consistency,

such as Nguyen (2013), focus on obtaining rates of contraction; thus these results rely on stronger

conditions that are typically verified for individual component families by imposing additional

constraints, such as (second-order) strong identifiability of the mixture or a compact parameter space

(Chen, 1995; Heinrich and Kahn, 2018; Nguyen, 2013). But neither of these constraints are satisfied

by common families of interest such as Gaussians with unknown mean and variance. By contrast,

our result uses the weakest notion of mixture identifiability (Teicher, 1961) along with a continuity

condition on the component family, and we relax the requirement of a compact parameter space. To

do so, we develop a novel theoretical condition that requires the component family to have degenerate

limits. Together, these advances ensure the applicability of our theory to practical likelihood families
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including, but not limited to, full Gaussians. In fact, the degenerate limits condition and its use in

our analysis may be useful for extending other results on posterior asymptotics that currently rely

on compact parameter spaces.

Finally, Miller and Harrison (2013, 2014) have shown that typical uses of Dirichlet process

mixture models (DPMMs) inconsistently estimate the true, generating number of components. But

Miller and Harrison (2013, 2014) focus on the DPMM prior instead of the FMM and on perfectly

specified likelihoods. The DPMM is misspecified in a different sense than the one we focus on in the

present chapter: namely, the DPMM uses infinitely many components though we assume finitely

many generated the data. For this reason, practitioners typically invoke the DPMM posterior on the

number of clusters (Huelsenbeck and Andolfatto, 2007; Pella and Masuda, 2006), i.e., components

represented in the observed data, rather than the component-count posterior directly. Indeed,

Miller and Harrison (2018) recommend using the FMM we study here to resolve the difficulties

of the DPMM. Finally, observe that the work of Miller and Harrison (2018) demonstrates that

nonparametrically estimating component shape with a DPMM would not provide a simple resolution

of the FMM divergence issue.

3.2 Main result

We begin with a brief description of the finite mixture model used in this work. In this section, we

provide just enough detail to state Definition 3.2.1 and leave the precise probabilistic details for

Section 3.3. Let g be a mixing measure g :=
∑k
j=1 pjδθj on a parameter space Θ with pj ∈ [0, 1]

and
∑k
j=1 pj = 1, and let Ψ = {ψθ : θ ∈ Θ} be a family of component distributions dominated by a

σ-finite measure µ. We can express a finite mixture f of the components as

f =

∫

Θ

ψθdg(θ) =

k∑

j=1

pjψθj .

Consider a Bayesian model with prior distribution Π on the set of all mixing measures G on Θ

with finitely many atoms, i.e., g ∼ Π, and likelihood corresponding to conditionally i.i.d. data from
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f =
∫
ψθdg(θ). The model assumes the likelihood is f , but the model is misspecified ; i.e., the

observations X1:N := (X1, . . . , XN ) are generated conditionally i.i.d. from a finite mixture f0 of

distributions not in Ψ.

Our main result is that under this misspecification of the likelihood, the posterior on the number

of components Π(k |X1:N ) diverges; i.e., for any finite k ∈ N, Π(k |X1:N )→ 0 as N →∞. We make

only two requirements of the mixture model to guarantee this result: (1) the true data-generating

distribution f0 must be arbitrarily well-approximated by finite mixtures of Ψ, and (2) the family Ψ

must satisfy mild regularity conditions that hold for popular mixture models (e.g., the family Ψ of

Gaussians parametrized by mean and variance). We provide precise definitions of the assumptions

needed for Definition 3.2.1 to hold in Section 3.3, and a proof in Section 3.4.

Theorem 3.2.1 (Main result). Suppose observations X1:N are generated i.i.d. from a distribution

f0 that is not a finite mixture of Ψ. Assume that:

Definition 3.3.1: f0 is in the KL-support of the prior Π,

Definition 3.3.6: Ψ is continuous, is mixture-identifiable, and has degenerate limits.

Then the posterior on the number of components diverges; i.e., for all k ∈ N,

Π(k |X1:N )
N→∞−→ 0 f0-a.s. (3.1)

Note that the conditions of the theorem—although technical—are satisfied by a wide class of

models used in practice. Definition 3.3.1 requires that the prior Π places enough mass on mixtures

near the true generating distribution f0. Definition 3.3.6 enforces regularity of the component family

and is satisfied by many popular models used in practice, such as the multivariate Gaussian family.

Proposition 3.2.2. Let Ψ =
{
N (ν,Σ) : ν ∈ Rd, Σ ∈ Sd++

}
be the multivariate Gaussian family,

where Sd++ := {Σ ∈ Rd×d : Σ = Σ>, Σ � 0} is the set of d× d symmetric, positive definite matrices.

Then Ψ satisfies Definition 3.3.6.
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Thus, provided that f0 is in the KL-support of the prior, under a misspecified Gaussian

mixture model, our main result implies that the posterior number of components diverges. While

Definition 3.2.2 is stated for Gaussian component distributions, we generalize it to mixture-identifiable

location-scale families Ψ in Definition B.2.2.

Additionally, we note that the divergence of the posterior given in Equation (3.1) is stronger than

the behavior described in Miller and Harrison (2013) for DPMMs: namely, Miller and Harrison (2013)

show that the posterior probability converges to 0 at the true number of components. In contrast,

here we show that the posterior probability converges to 0 for any finite number of components. We

conjecture that posterior divergence also holds for DPMMs, but the proof is outside of the scope of

this chapter.

Extension: Priors that vary with N . While the result of Definition 3.2.1 assumes that the

model uses a fixed prior Π, in practical modeling scenarios one may specify a prior ΠN that depends

on the observed data X1:N . For instance, these priors can arise in empirical Bayes; see Sections 3.5

and 3.8 for examples. In Section 3.5 we show that if f0 satisfies a modified KL-support condition

with respect to the sequence of priors ΠN , the number of components also diverges in this setting.

Extension: Priors with an upper bound on the number of components. Definition 3.2.1

is designed for priors that place full support on any positive integer number of components. One

might instead use a prior that has support on at most k̃ components, with k̃ finite. In this case, the

posterior number of components will not diverge to infinity but instead typically concentrate on the

upper bound, k̃. A precise statement of this behavior appears in Definition B.1.1 (in Appendix B.1)

as an analog of our Definition 3.2.1. Definition B.1.1 shows that posterior inference does not improve

over the baseline estimate of the number of components provided by k̃. If k̃ is already a good

estimate of the number components, posterior concentration at k̃ does not improve the estimate. In

practice k̃ is often chosen as some large upper bound of convenience; then k̃ is not a good estimate

of the number of components, and concentration at k̃ is undesirable.
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3.3 Precise setup and assumptions in Theorem 3.2.1

This section makes the details of the modeling setup and each of the conditions in Definition 3.2.1

precise.

3.3.1 Notation and setup

Let X and Θ be Polish spaces for the observations and parameters, respectively, and endow both

with their Borel σ-algebra. For a topological space (·), let C (·) be the bounded continuous functions

from (·) into R, and P(·) be the set of probability measures on (·) endowed with the weak topology

metrized by the Lévy-Prokhorov distance d (Definition 2.1.1). We use fi ⇒ f and fi ⇐⇒ f ′i to

denote limi→∞ d(fi, f) = 0 and limi→∞ d(fi, f
′
i) = 0, respectively, for fi, f ′i , f ∈P(·). We assume

that the family of distributions Ψ = {ψθ : θ ∈ Θ} is absolutely continuous with respect to a σ-finite

base measure µ, i.e., ψθ � µ for all θ ∈ Θ, and that for measurable A ⊆ X, ψθ(A) is a measurable

function on Θ. Define the measurable mapping F : P(Θ) → P(X) from mixing measures to

mixtures of Ψ, F (g) =
∫
ψθdg(θ). Let G be the set of atomic probability measures on Θ with finitely

many atoms, and let F be the set of finite mixtures of Ψ.

In the Bayesian finite mixture model from Section 3.2, a mixing measure g ∼ Π is generated

from a prior measure Π on G, and f = F (g) is a likelihood distribution.

The posterior distribution on the mixing measure is, for all measurable A ⊆ G,

Π(A |X1:N ) =

∫
A

∏N
n=1

df
dµ (Xn) dΠ(g)

∫
G
∏N
n=1

df
dµ (Xn) dΠ(g)

, (3.2)

where df
dµ is the density of f = F (g) with respect to µ. This posterior on the mixing measure g ∈ G

induces a posterior on the number of components k ∈ N by counting the number of atoms in g, and

it also induces a posterior on mixtures f ∈ F via the pushforward through the mapping F . We

overload the notation Π(· |X1:N ) to refer to all of these posterior distributions and Π(·) to refer to

prior distributions; the meaning should be clear from context.
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3.3.2 Model assumptions

The first assumption of Definition 3.2.1 is that while the true data-generating distribution f0 is

not contained in the model class f0 /∈ F, it lies on the boundary of the model class. In particular,

we assume f0 is in the KL-support of the prior Π. Denote the Kullback-Leibler (KL) divergence

between probability measures f0 and f as

KL(f0, f) :=





∫
log
(
df0
df

)
df0 f0 � f

∞ otherwise
.

Assumption 3.3.1. For all ε > 0, the prior distribution Π satisfies

Π(f ∈ F : KL(f0, f) < ε) > 0.

We use Definition 3.3.1 in the proof of Definition 3.2.1 primarily to ensure that the Bayesian

posterior is consistent for f0. Note that Definition 3.3.1 is fairly weak in practice. Intuitively, it

just requires that the family Ψ is rich enough so that mixtures of Ψ can approximate f0 arbitrarily

well, and that the prior Π places sufficient mass on those mixtures close to f0. For Bayesian

mixture modeling, Ghosal et al. (1999, Theorem 3), Tokdar (2006, Theorem 3.2), Wu and Ghosal

(2008, Theorem 2.3), and Petralia et al. (2012, Theorem 1) provide conditions needed to satisfy

Definition 3.3.1.

The second assumption of Definition 3.2.1 is that the family of component distributions Ψ

is well-behaved. This assumption has three stipulations. First, the mapping θ 7→ ψθ must be

continuous; this condition essentially asserts that similar parameter values θ must result in similar

component distributions ψθ.

Definition 3.3.2. The family Ψ is continuous if the map θ 7→ ψθ is continuous.

Second, the family Ψ must be mixture-identifiable, which guarantees that each mixture f ∈ F is

associated with a unique mixing measure G ∈ G.
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Definition 3.3.3 (Teicher (1961, 1963)). The family Ψ is mixture-identifiable if the mapping

F (g) =
∫
ψθdg(θ) restricted to finite mixtures F : G→ F is a bijection.

In practice, one should always use an identifiable mixture model for clustering; without iden-

tifiability, the task of learning the number of components is ill posed. And many models satisfy

mixture-identifiability, such as finite mixtures of the multivariate Gaussian family (Yakowitz and

Spragins, 1968), the Cauchy family (Yakowitz and Spragins, 1968), the gamma family (Teicher,

1963), the generalized logistic family, the generalized Gumbel family, the Weibull family, and von

Mises family (Ho and Nguyen, 2016, Theorem 3.3). A number of authors (e.g. Chen, 1995; Guha

et al., 2021; Heinrich and Kahn, 2018; Ho and Nguyen, 2016; Ishwaran et al., 2001; Nguyen, 2013)

appeal to stronger notions of identifiability for mixtures than Definition 3.3.3. But, to show posterior

divergence in the present work, we do not require conditions stronger than Definition 3.3.3.

The third stipulation—that the family Ψ has degenerate limits—guarantees that a “poorly

behaved” sequence of parameters (θi)i∈N creates a likewise “poorly behaved” sequence of distributions

(ψθi)i∈N. This condition allows us to rule out such sequences in the proof of Definition 3.2.1, and

is the essential regularity condition to guarantee that a sequence of finite mixtures of at most k

components cannot approximate f0 arbitrarily closely.

Definition 3.3.4. A sequence of distributions (ψi)
∞
i=1 is µ-wide if for any closed set C such that

µ(C) = 0 and any sequence of distributions (φi)
∞
i=1 such that ψi ⇐⇒ φi,

lim sup
i→∞

φi(C) = 0.

Definition 3.3.5. The family Ψ has degenerate limits if for any tight, µ-wide sequence (ψθi)i∈N,

we have that (θi)i∈N is relatively compact.

The contrapositive of Definition 3.3.5 provides an intuitive explanation of the condition: as

i→∞, for any sequence of parameters θi that eventually leaves every compact set K ⊆ Θ, either the

ψθi become “arbitrarily flat” (not tight) or “arbitrarily peaky” (not µ-wide). For example, consider

the family Ψ of Gaussians on R with Lebesgue measure µ. If the variance of ψθi shrinks as i grows,
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the sequence of distributions converges weakly to a sequence of point masses (not dominated by the

Lebesgue measure). If either the variance or the mean diverges, the distributions flatten out and the

sequence is not tight. We use the fact that these are the only two possibilities when a sequence of

parameters is poorly behaved (not relatively compact) in the proof of Definition 3.2.1.

These three stipulations together yield Definition 3.3.6.

Assumption 3.3.6. The mixture component family Ψ is continuous, is mixture-identifiable, and

has degenerate limits.

3.4 Proof of Theorem 3.2.1

The proof has two essential steps. The first is to show that the Bayesian posterior is weakly consistent

for the mixture f0; i.e., for any weak neighborhood U of f0 the sequence of posterior distributions

satisfies

Π(U |X1:N )
N→∞−→ 1, f0-a.s. (3.3)

By Schwartz’s theorem (Definition 2.1.8), weak consistency for f0 is guaranteed directly by Defini-

tion 3.3.1 and the fact that Ψ is dominated by a σ-finite measure µ. The second step is to show

that for any finite k ∈ N, there exists a weak neighborhood U of f0 containing no mixtures of the

family Ψ with at most k components. Together, these steps show that the posterior probability of

the set of all k-component mixtures converges to 0 f0-a.s. as the amount of observed data grows.

We provide a proof of the second step. To begin, note that Definition 3.3.1 has two additional

implications about f0 beyond Equation (3.3). First, f0 must be absolutely continuous with respect

to the dominating measure µ; if it were not, then there exists a measurable set A such that f0(A) > 0

and µ(A) = 0. Since µ dominates Ψ, any f ∈ F satisfies f(A) = 0. Therefore KL(f0, f) =∞, and the

prior support condition cannot hold. Second, it implies that f0 can be arbitrarily well-approximated

by finite mixtures under the weak metric, i.e., there exists a sequence of finite mixtures fi ∈ F, i ∈ N

such that fi ⇒ f0 as i→∞. This holds because
√

1
2KL(f0, f) ≥ TV(f0, f) ≥ d(f0, f).
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Now suppose the contrary of the claim for the second step, i.e., that there exists a sequence

(fi)
∞
i=1 of mixtures of at most k components from Ψ such that fi ⇒ f0. By mixture-identifiability,

we have a sequence of mixing measures gi with at most k atoms such that F (gi) = fi. Suppose first

that the atoms of the sequence (gi)i∈N either stay in a compact set or have weights converging to 0.

More precisely, suppose there exists a compact set K ⊆ Θ such that

gi
(
Θ \K

)
→ 0. (3.4)

Decompose each gi = gi,K + gi,Θ\K such that gi,K is supported on K and gi,Θ\K is supported on

Θ \K. Define the sequence of probability measures ĝi,K =
gi,K

gi,K(Θ) for sufficiently large i such that

the denominator is nonzero. Then Equation (3.4) implies

F
(
ĝi,K

)
⇒ f0.

Since Ψ is continuous and mixture-identifiable, the restriction of F to the domain G is continuous

and invertible; and since K is compact, the elements of (ĝi,K)i∈N are contained in a compact set

GK ⊆ G by Prokhorov’s theorem (Definition 2.1.5). Therefore F (GK) = FK is also compact, and

the map F restricted to the domain GK is uniformly continuous with a uniformly continuous inverse

by Rudin (1976, Theorems 4.14, 4.17, 4.19). Next since F (ĝi,K) ⇒ f0, the sequence F (ĝi,K) is

Cauchy in FK ; and since F−1 is uniformly continuous on FK , the sequence ĝi,K must also be Cauchy

in GK . Since GK is compact, ĝi,K converges in GK . Definition 3.4.1 below guarantees that the

convergent limit gK is also a mixing measure with at most k atoms; continuity of F implies that

F (gK) = f0, which is a contradiction, since by assumption f0 is not representable as a finite mixture

of Ψ.

Lemma 3.4.1. Suppose φ, (φi)i∈N are Borel probability measures on a Polish space such that φi ⇒ φ

and supi | suppφi| ≤ k ∈ N. Then | suppφ| ≤ k.

Proof. Suppose | suppφ| > k. Then we can find k + 1 distinct points x1, . . . , xk+1 ∈ suppφ.

Pick any metric ρ on the Polish space, and denote the minimum pairwise distance between the
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points 2ε. Then for each point j = 1, . . . , k + 1 define the bounded, continuous function hj(x) =

0 ∨
(
1− ε−1ρ(x, xj)

)
. Since xj ∈ suppφ, we have that

∫
hjdφ > 0. Weak convergence φi ⇒ φ

therefore implies minj=1,...,k+1 lim infi→∞
∫
hjdφi > 0. But the hj are nonzero on disjoint sets, and

each φi only has k atoms; the pigeonhole principle yields a contradiction.

Now we consider the remaining case: for all compact sets K ⊆ Θ, gi(Θ\K) 6→ 0. Therefore there

exists a sequence of parameters (θi)
∞
i=1 that is not relatively compact such that lim supi→∞ gi({θi}) >

0. By Definition 3.3.6, the sequence (ψθi)i∈N is either not tight or not µ-wide. If (ψθi)i∈N is not

tight then fi = F (gi) is not tight, and by Prokhorov’s theorem fi cannot converge to a probability

measure, which contradicts fi ⇒ f0. If (ψθi)i∈N is not µ-wide then fi = F (gi) is not µ-wide. Denote

(φi)i∈N to be the singular sequence associated with (fi)i∈N and C to be the closed set such that

lim supi→∞ φi(C) > 0, µ(C) = 0, and φi ⇐⇒ fi per Definition 3.3.4. Since f0 � µ, f0(C) = 0.

But fi ⇒ f0 implies that φi ⇒ f0, so lim supi→∞ φi(C) = f0(C) = 0 by the Portmanteau theorem

(Definition 2.1.3). This is a contradiction.

3.5 Extension to priors that vary with N

Our main result (i.e., Definition 3.2.1) applies to the setting of a fixed prior Π. However, it is often

natural to specify a prior distribution that changes with N (e.g., Roeder and Wasserman, 1997;

Richardson and Green, 1997; and Miller and Harrison, 2018, Section 7.2.1). Definition 3.5.2 below

demonstrates that a result nearly identical to Definition 3.2.1 holds for priors that are allowed to

vary with N , provided that f0 is in the KL-support of the sequence of priors ΠN . The only difference

is that our result in this case is slightly weaker: we show that the posterior number of components

diverges in probability rather than almost surely.

Assumption 3.5.1. For all ε > 0, the sequence of prior distributions ΠN satisfies

lim inf
N→∞

ΠN (f : KL(f0, f) < ε) > 0.
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Corollary 3.5.2. Suppose in the setting of Definition 3.2.1 we replace Definition 3.3.1 with

Definition 3.5.1. Then the posterior on the number of components diverges in f0-probability: i.e.,

for all k ∈ N,

Π(k |X1:N )
N→∞−→ 0 in f0-probability.

Proof. Since for any ε > 0, lim infN→∞ΠN (f : KL(f0, f) < ε) > 0, Ghosal and van der Vaart (2017,

Theorem 6.17, Lemma 6.26, and Example 6.20) imply that the posterior is weakly consistent at f0

in probability: i.e., for any weak neighborhood U of f0,

Π(U |X1:N )
N→∞−→ 1 in f0-probability.

Definition 3.5.1 also implies that for sufficiently large N , f0 is a weak limit of finite mixtures in F.

The remainder of the proof is identical to that of Definition 3.2.1.

3.6 Extension to power posteriors

One proposal to address likelihood misspecification is to use an α-posterior, or power posterior, where

we replace the likelihood with the same likelihood but raised to a fixed power α > 0, often between

0 and 1 (Ghosh and Sudderth, 2012; Grünwald and van Ommen, 2017; Grünwald, 2006; Holmes

and Walker, 2017; Royall and Tsou, 2003). Power posteriors have much more general application

than just to mixture models; we focus only on mixture models here and note that behavior of power

posteriors for other models may be very different than for mixture models. In a separate line of

work, Miller and Dunson (2019) propose a coarsened posterior, which they show can be closely

approximated by a variant of the power posterior with exponent αN → 0 as the number of data

points N →∞; in fact, they use this approximation in all of their experiments. Note that we use

the terminology “power posterior” or α-posterior throughout to refer to the fixed power case. Here

we find that the component-count power posterior, with power that is constant in N , diverges in

the same way.
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The α-posterior distribution on the mixing measure is

∀ measurable A ⊆ G, Π(α)(A |X1:N ) =

∫
A

∏N
n=1( dfdµ )α(Xn) dΠ(g)

∫
G
∏N
n=1( dfdµ )α(Xn) dΠ(g)

, (3.5)

where df
dµ is the density of f = F (g) with respect to µ and α > 0. The α-posterior on the mixing

measure g ∈ G induces an α-posterior on the number of components k ∈ N by counting the number

of atoms in g, and it also induces a posterior on mixtures f ∈ F via the pushforward through the

mapping F . We overload the notation Π(α)(· |X1:N ) to refer to all of these α-posterior distributions

and Π(·) to refer to prior distributions; the meaning should be clear from context.

Let Π(α)(k |X1:N ) denote the posterior marginal number of components induced by raising

the likelihood to a fixed power α > 0. Our main result is that under this misspecification of the

likelihood, for any α ∈ (0, 1], the α-posterior on the number of components Π(α)(k |X1:N ) diverges;

i.e., for any finite k ∈ N, Π(α)(k |X1:N )→ 0 as N →∞.

We make only two requirements of the mixture model to guarantee this result: (1) the true

data-generating distribution f0 must be arbitrarily well-approximated by finite mixtures of Ψ, and

(2) the family Ψ must satisfy mild regularity conditions that hold for popular mixture models (e.g.,

the family Ψ of Gaussians parametrized by mean and variance). We provide precise definitions of

the assumptions needed for Definition 3.2.1 to hold in Section 3.3, and a proof in Section 3.4.

Theorem 3.6.1 (Main result). Suppose observations X1:N are generated i.i.d. from a distribution

f0 that is not a finite mixture of Ψ. Assume that:

Definition 3.3.1: f0 is in the KL-support of the prior Π, and

Definition 3.3.6: Ψ is continuous, is mixture-identifiable, and has degenerate limits.

Then for any α ∈ (0, 1], the α-posterior on the number of components diverges; i.e., for all k ∈ N,

Π(α)(k |X1:N )
N→∞−→ 0 f0-a.s. (3.6)

We use a similar analysis as before to lend insight into the power posterior for finite mixtures;
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again the proof has two essential steps. The first is to show that for any α ∈ (0, 1], the α-posterior

is weakly consistent for the mixture f0; i.e., for any weak neighborhood U of f0 the sequence of

posterior distributions satisfies

Π(α)(U |X1:N )
N→∞−→ 1, f0-a.s. (3.7)

Weak consistency for f0 is guaranteed directly by Definition 3.3.1 and the fact that Ψ is dominated by

a σ-finite measure µ. For α = 1, Definition 3.3.1 implies weak consistency for f0, i.e., Equation (3.7)

(Ghosh and Ramamoorthi, 2003, Theorem 4.4.2). For α ∈ (0, 1), if Definition 3.3.1 holds, by Ghosal

and van der Vaart (2017, Theorem 6.54), with f0-probability 1, for any Hellinger neighborhood V of

f0 and any α ∈ (0, 1), Π(α)(V |X1:N )
N→∞−→ 1. Thus, since V ⊆ U,

Π(α)(U |X1:N ) ≥ Π(α)(V |X1:N )
N→∞−→ 1, f0-a.s.

The second step follows the same proof as before.

3.7 Related work

In this work, we consider FMMs with a prior on the number of components. In the broader Bayesian

mixture modeling literature, posterior consistency for the mixture density (Ghosal et al., 1999;

Kruijer et al., 2010; Lijoi et al., 2004) and the mixing measure (Guha et al., 2021; Ho and Nguyen,

2016; Nguyen, 2013) is well established. But posterior consistency for the number of components is

not as thoroughly characterized. There are several results establishing consistency for the number

of components in well-specified FMMs. Nobile (1994, Proposition 3.5) and Guha et al. (2021,

Theorem 3.1a) demonstrate that FMMs exhibit posterior consistency for the number of components

when the model is well specified and Ψ is mixture-identifiable. The present work characterizes the

behavior of the FMM posterior on the number of components under component misspecification.

Under misspecification of the component family or the support of the true mixing measure, Guha

et al. (2021, Theorem 4.1, Theorem 4.3) establish posterior rates of contraction for the mixing
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measure for Gaussian and Laplace location mixtures with compact parameter spaces. Our results,

which rely on posterior density consistency results, assume weaker conditions on the prior and hold

for more general classes of component families, such as multivariate Gaussians parameterized by a

mean and covariance.

A related approach for handling a finite but unknown number of components is to specify

a prior with a finite upper bound on the number of components (e.g. Chambaz and Rousseau,

2008; Frühwirth-Schnatter and Malsiner-Walli, 2019; Ishwaran et al., 2001; Malsiner-Walli et al.,

2016; Rousseau and Mengersen, 2011; Zhang et al., 2018). In the setting of overfitted FMMs with

well-specified component densities, Rousseau and Mengersen (2011, Theorem 1) show that under a

stronger identifiability condition than mixture-identifiability and additional regularity assumptions on

the model, the posterior will concentrate properly by emptying the extra components. Ishwaran et al.

(2001, Theorem 1) consider the setting of estimating the number of components with the assumption

of a known upper bound on the true number of components and well-specified components, and show

that the posterior does not asymptotically underestimate the number of components when assuming

a stronger identifiability condition than mixture-identifiability and a KL-support condition on the

prior. Under a weaker notion of (second-order) strong identifiability (Chen, 1995) and a well-specified

model, Chambaz and Rousseau (2008, Theorem 4) provide upper bounds on the underestimation

and overestimation error of the number of components; furthermore, they show that their conditions

are satisfied by univariate Gaussians with bounded mean and variance (Chambaz and Rousseau,

2008, Corollary 1). Notably, all of these methods with finite-support priors assume well-specified

component families. By contrast, we show in Theorem B.1 that even for these finite-support priors,

misspecified component families yield unreliable estimates of the number of components.

Frühwirth-Schnatter (2006) provides a wide-ranging review of methodology for finite mixture

modeling. In (e.g.) Section 7.1, Frühwirth-Schnatter (2006) observes that, in practice, the learned

number of mixture components will generally be higher than the true generating number of com-

ponents when the likelihood is misspecified—but does not prove a result about the number of

components under misspecification. Similarly, Miller and Harrison (2018, Section 7.1.5) discuss the

issue of estimating the number of components in FMMs under model misspecification and state that
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the posterior number of components is expected to diverge to infinity as the number of samples

increases, but no proof of this asymptotic behavior is provided.

Finally, a growing body of work is focused on developing more robust FMMs and related

mixture models. In order to address the issue of component misspecification, a number of authors

propose using finite mixture models with nonparametric component densities, e.g. Gaussian-mixture

components (Bartolucci, 2005; Di Zio et al., 2007; Malsiner-Walli et al., 2017) or overfitted-mixture

components (Aragam et al., 2020). However, for these finite mixture models that have mixtures

as components, the posterior number of components and its asymptotic behavior have yet to be

characterized.

3.8 Experiments

In this section, we demonstrate one of the primary practical implications of our theory: the

inferred number of components can change drastically depending on the amount of observed data in

misspecified finite mixture models. For all experiments below, we use a finite mixture model with

a multivariate Gaussian component family having diagonal covariance matrices and a conjugate

prior on each dimension. In particular, consider number of components k, mixture weights p ∈ Rk,

Gaussian component precisions τ ∈ Rk×D+ and means θ ∈ Rk×D, labels Z ∈ {1, . . . , k}N , and data

X ∈ RN×D.

Then the probabilistic generative model is

k ∼ Geom(r) p ∼ Dirichletk(γ, . . . , γ)

τjd
i.i.d.∼ Gam(α, β) θjd

i.i.d.∼ N (m,κ−1
jd )

Zn
i.i.d.∼ Categorical(p) Xnd

ind∼ N (θznd, τ
−1
znd

),

where j ranges from 1, . . . , k, d ranges from 1, . . . , D, and n ranges from 1, . . . , N . For posterior

inference, we use a Julia implementation of split-merge collapsed Gibbs sampling (Jain and Neal,
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(a) Gaussian data, 1 component (b) Gaussian data, 2 components

(c) Laplace data, 1 component (d) Laplace data, 2 components

(e) Gaussian data, varying prior (f) Laplace data, varying prior

Figure 3.8.1: Upper and middle rows: Posterior probability of the number of components k for
Gaussian mixture models with a fixed prior fit to (a,b) univariate data generated from a Gaussian
mixture model and (c,d) a Laplace mixture model, Lower row : Posterior probability of the number
of components of Gaussian mixtures with a varying prior fit to (e) 2-component univariate data
from a Gaussian mixture model and (f) 2-component univariate data from a Laplace mixture model.
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2004; Neal, 2000) from Miller and Harrison (2018).1 The model and inference algorithm are described

in more detail in Miller and Harrison (2018, Sec. 7.2.2, Algorithm 1). Note that we use this model

primarily to illustrate the problem of posterior divergence under model misspecification; it should

not be interpreted as a carefully-specified model for the data examples that we study. Also note that

while the empirical examples below involve Gaussian FMMs, our theory applies to a more general

class of component distributions.

3.8.1 Synthetic data

Gaussian and Laplace mixtures Our first experiments on synthetic data are inspired by

Figure 3 of Miller and Dunson (2019), which investigates the posterior of a mixture of perturbed

Gaussians. Here we study the effects of varying data set sizes under both well-specified and

misspecified models. We generated data sets of increasing size N ∈ {50, 200, 1000, 5000, 10000}

from 1- and 2-component univariate Gaussian and Laplace mixture models, where the 1-component

distributions have mean 0 and scale 1, and the 2-component distributions have means (−5, 5),

scales (1.5, 1), and mixing weights (0.4, 0.6). We generated the sequence of data sets such that

each was a subset of the next, larger data set in the sequence. Following Miller and Harrison

(2018, Section 7.2.1), we set the hyperparameters of the Bayesian finite mixture model as follows:

m = 1
2 (maxn∈[Ñ ]Xn+minn∈[Ñ ]Xn) where Ñ = 10,000, κ = (maxn∈[Ñ ]Xn−minn∈[Ñ ]Xn)−2, α = 2,

r = 0.1, γ = 1, and β ∼ Gam(0.2, 10/κ). We refer to Miller and Harrison (2018, Section 7.2.1) for

additional details on the choice of model hyperparameters and the sampling of β. We ran a total of

100,000 Markov chain Monte Carlo iterations per data set; we discarded the first 10,000 iterations

as burn-in.

The results of the simulations are shown in Figure 3.8.1. For the data generated from the

1-component models, the posterior on the number of components concentrates around 1 in the case

of Gaussian-generated data as the sample size increases (Figure 3.8.1a), whereas the posterior on the

number of components diverges for the Laplace data (Figure 3.8.1c). We observe similar behavior in

the 2-component case, where the posterior concentrates around the correct value in the Gaussian
1Code available at https://github.com/jwmi/BayesianMixtures.jl.
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(a) Data generated with ε = 0.01 (b) Data generated with ε = 0.1

Figure 3.8.2: Posterior probability of the number of components k for Gaussian mixture models
with a fixed prior fit to data generated from an ε-contaminated 2-component Gaussian mixture
model, where ε is the proportion of data generated from a Laplace distribution.

case (Figure 3.8.1b) but not the Laplace case (Figure 3.8.1d).

Priors that vary with N Next, we considered the same finite Gaussian mixture model described

above but with a prior that varies with the data. Specifically, for the prior on the means, we

set the hyperparameters to mN = 1
2 (maxn∈[N ]Xn + minn∈[N ]Xn) and κN = (maxn∈[N ]Xn −

minn∈[N ]Xn)−2, which is the setting considered by Miller and Harrison (2018, Section 7.2.1); the

other hyperparameters were otherwise set to the same values above. We used the 2-component

Gaussian and Laplace data sets constructed above for the fixed prior case. The bottom row of

Figure 3.8.1 shows the results of the posterior number of components under this prior for the

well-specified and misspecified cases; again we observe that the posterior diverges under model

misspecification.

ε-contamination Finally, in order to study the posterior number of components under a very

slight amount of misspecification, we applied the fixed-prior Gaussian mixture model above to data

generated with ε-contamination. That is, we generated the data according to the ε-contaminated

distribution f0 = (1 − ε)f + εq, where f is a 2-component Gaussian mixture distribution with
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means (5, 10), variances (1, 1.5), and mixing weights (0.4, 0.6), and q is a Laplace distribution with

location 0 and scale 1. We generated two data sets: one with ε = 0.01 and one with ε = 0.1. In

Figure 3.8.2, we observe that even under very small amounts of misspecification, the posterior

number of components diverges.

3.8.2 Gene expression data

Computational biologists are interested in classifying cell types by applying clustering techniques

to gene expression data (de Souto et al., 2008; McLachlan et al., 2002; McNicholas and Murphy,

2010; Medvedovic and Sivaganesan, 2002; Medvedovic et al., 2004; Rasmussen et al., 2008; Yeung

et al., 2001). In our next set of experiments, we apply the Gaussian finite mixture model to two

gene expression data sets: (1) single-cell RNA sequencing data from mouse cortex and hippocampus

cells (Zeisel et al., 2015) with the same feature selection as Prabhakaran et al. (2016) (N = 3008,

D = 558, 11,000 Gibbs sampling steps with 1,000 of those as burn-in) and (2) mRNA expression

data from human lung tissue (Bhattacharjee et al., 2001) (N = 203, D = 1543, and 10,000 Gibbs

sampling steps with 1,000 of those burn-in). Our experiments here represent a simplified version of

previous mixture model analyses for these and other related data sets (Armstrong et al., 2001; de

Souto et al., 2008; Miller and Harrison, 2018; Prabhakaran et al., 2016).

As these gene expression data sets contain counts, we first transformed the data to real numerical

values. In particular, we used a base-2 log transform followed by standardization—such that each

dimension of the data had zero mean and unit variance—per standard practices (e.g., Miller and

Harrison (2018)). Then to examine the effect of increasing data set size on inferential results, we

randomly sampled subsets of increasing size without replacement; each smaller subset was contained

in the next larger data set. For both data sets, we used hyperparameters α = 1, β = 1, m = 0,

κjd = τjd, r = 0.1, and γ = 1.

For the single-cell RNAseq data set, the posterior on the number of components is shown in

Figure 3.1.1a. Here the ground truth number of clusters is captured when the data set size is

N = 100. But as predicted by our theory, as we increase the number of data points, the posterior

number of components diverges.
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The posterior on the number of components for the lung gene expression data is shown in

Figure 3.1.1b. Again we find that on the smallest data subsets, the posterior appears to capture

the ground truth number of clusters, but that as we examine more and more data, the posterior

diverges.

The diagonal covariance Gaussian components are a particularly simple form of cluster shape.

But no matter how complex the component model, one could wonder whether an even-more complex

model might solve the issue that the number of components diverge. In the typical real-world

situation that the component model cannot be specified in absolute perfection, our theory confirms

that the divergence problem will remain. Thus, these examples suggest the need for more robust

analyses.

3.8.3 Power posterior results

For all experiments below, we use a finite mixture model with a Gaussian component family and a

conjugate prior. In particular, consider number of components k, mixture weights p ∈ Rk, Gaussian

component precisions τ ∈ Rk+ and means θ ∈ Rk, labels Z ∈ {1, . . . , k}N , and data X ∈ RN . Then

the probabilistic generative model is

k ∼ Geom(r) w ∼ Dirichletk(γ, . . . , γ)

τj
i.i.d.∼ Gam(α, β) θj

i.i.d.∼ N (m,κ−1)

Zn
i.i.d.∼ Categorical(w) Xn

ind∼ N (θzn , τ
−1
zn ),

where j ranges from 1, . . . , k, and n ranges from 1, . . . , N .

For posterior inference, we used a Gibbs sampler (Miller and Harrison, 2018, Sec. 7.2.2, Algo-

rithm 1), coupled with the approximation described in Miller and Dunson (2019, Section 5). Note

that we use this model primarily to illustrate the problem of α-posterior divergence under model

misspecification; it should not be interpreted as a carefully-specified model for the data examples

that we study. Also note that while the empirical examples below involve Gaussian FMMs, our

theory applies to a more general class of component distributions.
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In this section, we consider the behavior of the α-posterior only for fixed α ∈ (0, 1).

Synthetic mixture data Here we study the effects of varying data set sizes under a misspecified

model. We generated data sets of increasing size N ∈ {50, 100, 500, 1000, 5000, 10000} from a

2-component Laplace mixture models, where the 2-component distributions have means (−5, 5),

scales (1.5, 1), and mixing weights (0.4, 0.6). We generated the sequence of data sets such that

each was a subset of the next, larger data set in the sequence. Following Miller and Harrison

(2018, Section 7.2.1), we set the hyperparameters of the Bayesian finite mixture model as follows:

m = 1
2 (maxn∈[Ñ ]Xn + minn∈[Ñ ]Xn) where Ñ = 10,000, κ = (maxn∈[Ñ ]Xn − minn∈[Ñ ]Xn)−2,

α = 2, r = 0.1, γ = 1, and β = 1. We ran a total of 150,000 Markov chain Monte Carlo iterations

per data set; we discarded the first 50,000 iterations as burn-in.

In Figure 3.8.3, we show the α-posterior number of components resulting from fixed α =

1, 0.8, 0.5, 0.2. Note that α = 1 is the usual posterior distribution on the number of components. The

figures show that as α decreases, the posterior mass tends to shift to smaller numbers of components

and also becomes less concentrated. However, as in the usual posterior (α = 1), the α-posterior still

diverges, though more slowly with lower values of α.

Galaxy mixture data Mixture models are used in astronomy to characterize stellar populations

(Nemec and Nemec, 1991), including analysis of star and galaxy clusters. We study the Shapley

galaxy data set (Drinkwater et al., 2004), which contains measurements of redshifts (i.e., velocities in

km/s) for 4215 galaxies in the Shapley Concentration regions. To examine the effect of increasing data

set size on inferential results, we randomly sampled subsets of increasing size without replacement

with N ∈ {100, 200, 500, 1000, 2000, 4215}; each smaller subset was contained in the next larger

data set. We set the hyperparameters of the Bayesian finite mixture model as follows: m =

1
2 (maxn∈[Ñ ]Xn + minn∈[Ñ ]Xn) where Ñ = 4215, κ = (maxn∈[Ñ ]Xn − minn∈[Ñ ]Xn)−2, α = 2,

r = 0.1, γ = 1, and β = 1. We ran a total of 100,000 Markov chain Monte Carlo iterations per data

set; we discarded the first 50,000 iterations as burn-in.

The α-posterior number of components for this model is displayed in Figure 3.8.4. For α = 1, we

find that as we examine more and more data, the posterior diverges. Similar behavior occurs with
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(a) α = 1 (b) α = 0.8

(c) α = 0.5 (d) α = 0.2

Figure 3.8.3: Synthetic data generated from a 2-component Laplace mixture model. Curves are
α-posteriors on number of components (with fixed α) as N varies. The vertical black dotted line
denotes the generating number of components.
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(a) α = 1 (b) α = 0.8

(c) α = 0.5 (d) α = 0.2

Figure 3.8.4: Shapley galaxy data. Curves are α-posteriors on the number of components (with
fixed α) as N varies.

fractional α-posteriors. With smaller values of α, the α-posterior diverges more slowly.

3.9 Discussion

We have shown that the posterior distribution for the number of components in finite mixtures

diverges when the mixture component family is misspecified. Since misspecification is almost

unavoidable in real applications, it follows that finite mixture models are typically unreliable for

estimating the number of components. In practice, our conclusion implies that inferences on the
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number of components can change drastically depending on the size of the data set, calling into

question the usefulness of these counts in application.

Since our analysis is inherently asymptotic, it is possible that the Bayesian component-count

posterior may still provide useful inferences for a finite sample—for instance if care is taken to

account for the dependence of inferential conclusions on data set size. Indeed, a number of authors

have recently proposed robust Bayesian inference methods to mitigate likelihood misspecification

(Bissiri et al., 2016; Grünwald and van Ommen, 2017; Holmes and Walker, 2017; Huggins and Miller,

2019; Jewson et al., 2018; Knoblauch et al., 2019; Miller and Dunson, 2019; Rigon et al., 2023;

Rodriguez and Dunson, 2011; Wang et al., 2017; Woo and Sriram, 2006, 2007); it remains to better

understand connections between our results and these methods.
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Chapter 4

Edge-exchangeable graphs and

sparsity

Many popular network models rely on the assumption of (vertex) exchangeability, in which the

distribution of the graph is invariant to relabelings of the vertices. However, the Aldous-Hoover

theorem guarantees that these graphs are dense or empty with probability one, whereas many

real-world graphs are sparse. We present an alternative notion of exchangeability for random graphs,

which we call edge exchangeability, in which the distribution of a graph sequence is invariant to

the order of the edges. We demonstrate that edge-exchangeable models, unlike models that are

traditionally vertex exchangeable, can exhibit sparsity. To do so, we outline a general framework

for graph generative models; by contrast to the pioneering work of Caron and Fox (2017), models

within our framework are stationary across steps of the graph sequence. In particular, our model

grows the graph by instantiating more latent atoms of a single random measure as the dataset size

increases, rather than adding new atoms to the measure.
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4.1 Introduction

In recent years, network data have appeared in a growing number of applications, such as online

social networks, biological networks, and networks representing communication patterns. As a result,

there is growing interest in developing models for such data and studying their properties. Crucially,

individual network data sets also continue to increase in size; we typically assume that the number

of vertices is unbounded as time progresses. We say a graph sequence is dense if the number of

edges grows quadratically in the number of vertices, and a graph sequence is sparse if the number

of edges grows sub-quadratically as a function of the number of vertices. Sparse graph sequences

are more representative of real-world graph behavior. However, many popular network models (see,

e.g., Lloyd et al. (2012) for an extensive list) share the undesirable scaling property that they yield

dense sequences of graphs with probability one. The poor scaling properties of these models can be

traced back to a seemingly innocent assumption: that the vertices in the model are exchangeable,

that is, any finite permutation of the rows and columns of the graph adjacency matrix does not

change the distribution of the graph. Under this assumption, the Aldous-Hoover theorem (Aldous,

1981; Hoover, 1979) implies that such models generate dense or empty graphs with probability one

(Orbanz and Roy, 2015).

This fundamental model misspecification motivates the development of new models that can

achieve sparsity. One recent focus has been on models in which an additional parameter is employed

to uniformly decrease the probabilities of edges as the network grows (e.g., Bollobás et al. (2007);

Borgs et al. (2019, 2021); Wolfe and Olhede (2013)). While these models allow sparse graph sequences,

the sequences are no longer projective. In projective sequences, vertices and edges are added to a

graph as a graph sequence progresses—whereas in the models above, there is not generally any strict

subgraph relationship between earlier graphs and later graphs in the sequence. Projectivity is natural

in streaming modeling. For instance, we may wish to capture new users joining a social network

and new connections being made among existing users—or new employees joining a company and

new communications between existing employees.

Caron and Fox (2017) have pioneered initial work on sparse, projective graph sequences. Instead
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of the vertex exchangeability that yields the Aldous-Hoover theorem, they consider a notion of graph

exchangeability based on the idea of independent increments of subordinators (Kallenberg, 2005),

explored in depth by Veitch and Roy (2015). However, since this Kallenberg-style exchangeability

introduces a new countable infinity of latent vertices at every step in the graph sequence, its

generative mechanism seems particularly suited to the non-stationary domain. By contrast, we are

here interested in exploring stationary models that grow in complexity with the size of the data

set. Consider classic Bayesian nonparametric models as the Chinese restaurant process (CRP) and

Indian buffet process (IBP); these engender growth by using a single infinite latent collection of

parameters to generate a finite but growing set of instantiated parameters. Similarly, we propose a

framework that uses a single infinite latent collection of vertices to generate a finite but growing

set of vertices that participate in edges and thereby in the network. We believe our framework will

be a useful component in more complex, non-stationary graphical models—just as the CRP and

IBP are often combined with hidden Markov models or other explicit non-stationary mechanisms.

Additionally, Kallenberg exchangeability is intimately tied to continuous-valued labels of the vertices,

and here we are interested in providing a characterization of the graph sequence based solely on its

topology.

In this work, we introduce a new form of exchangeability, distinct from both vertex exchangeability

and Kallenberg exchangeability. In particular, we say that a graph sequence is edge exchangeable if

the distribution of any graph in the sequence is invariant to the order in which edges arrive—rather

than the order of the vertices. We will demonstrate that edge exchangeability admits a large family

of sparse, projective graph sequences.

In the remainder of the chapter, we start by defining dense and sparse graph sequences rigorously.

We review vertex exchangeability before introducing our new notion of edge exchangeability in

Section 4.2, which we also contrast with Kallenberg exchangeability in more detail in Section 4.4.

We define a family of models, which we call graph frequency models, based on random measures in

Section 4.3. We use these models to show that edge-exchangeable models can yield sparse, projective

graph sequences via theoretical analysis in Section 4.5 and via simulations in Section 4.6. Along the

way, we highlight other benefits of the edge exchangeability and graph frequency model frameworks.
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4.2 Exchangeability in graphs: old and new

Let (Gn)n := G1, G2, . . . be a sequence of graphs, where each graph Gn = (Vn, En) consists of a

(finite) set of vertices Vn and a (finite) multiset of edges En. Each edge e ∈ En is a set of two vertices

in Vn. We assume the sequence is projective—or growing—so that Vn ⊆ Vn+1 and En ⊆ En+1.

Consider, e.g., a social network with more users joining the network and making new connections

with existing users. We say that a graph sequence is dense if |En| = Ω(|Vn|2), i.e., the number of

edges is asymptotically lower bounded by c · |Vn|2 for some constant c. Conversely, a sequence is

sparse if |En| = o(|Vn|2), i.e., the number of edges is asymptotically upper bounded by c · |Vn|2 for

all constants c. In what follows, we consider random graph sequences, and we focus on the case

where |Vn| → ∞ almost surely.

4.2.1 Vertex-exchangeable graph sequences

If the number of vertices in the graph sequence grows to infinity, the graphs in the sequence can

be thought of as subgraphs of an “infinite” graph with infinitely many vertices and a correspond-

ingly infinite adjacency matrix. Traditionally, exchangeability in random graphs is defined as the

invariance of the distribution of any finite submatrix of this adjacency matrix—corresponding to

any finite collection of vertices—under finite permutation. Equivalently, we can express this form of

exchangeability, which we henceforth call vertex exchangeability, by considering a random sequence

of graphs (Gn)n with Vn = [n], where [n] := {1, . . . , n}. In this case, only the edge sequence is

random. Let π be any permutation of the integers [n]. If e = {v, w}, let π(e) := {π(v), π(w)}. If

En = {e1, . . . , em}, let π(En) := {π(e1), . . . , π(em)}.

Definition 4.2.1. Consider the random graph sequence (Gn)n, where Gn has vertices Vn = [n] and

edges En. (Gn)n is (infinitely) vertex exchangeable if for every n ∈ N and for every permutation π

of the vertices [n], Gn
d
= G̃n, where G̃n has vertices [n] and edges π(En).

A great many popular models for graphs are vertex exchangeable; see Appendix C.2 and Lloyd

et al. (2012) for a list. However, it follows from the Aldous-Hoover theorem (Aldous, 1981; Hoover,

1979) that any vertex-exchangeable graph is a mixture of sampling procedures from graphons.
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Further, any graph sampled from a graphon is almost surely dense or empty (Orbanz and Roy,

2015). Thus, vertex-exchangeable random graph models are misspecified models for sparse network

datasets, as they generate dense graphs.

4.2.2 Edge-exchangeable graph sequences

Vertex-exchangeable sequences have distributions invariant to the order of vertex arrival. We

introduce edge-exchangeable graph sequences, which will instead be invariant to the order of edge

arrival. As before, we let Gn = (Vn, En) be the nth graph in the sequence. Here, though, we

consider only active vertices—that is, vertices that are connected via some edge. That lets us define

Vn as a function of En; namely, Vn is the union of the vertices in En. Note that a graph that has

sub-quadratic growth in the number of edges as a function of the number of active vertices will

necessarily have sub-quadratic growth in the number of edges as a function of the number of all

vertices, so we obtain strictly stronger results by considering active vertices. In this case, the graph

Gn is completely defined by its edge set En.

As above, we suppose that En ⊆ En+1. We can emphasize this projectivity property by

augmenting each edge with the step on which it is added to the sequence. Let E′n be a collection

of tuples, in which the first element is the edge and the second element is the step (i.e., index) on

which the edge is added: E′n = {(e1, s1), . . . , (em, sm)}. We can then define a step-augmented graph

sequence (E′n)n = (E′1, E
′
2, . . .) as a sequence of step-augmented edge sets. Note that there is a

bijection between the step-augmented graph sequence and the original graph sequence.

Example 4.2.2. In the setup for vertex exchangeability, we assumed Vn = [n] and every edge is

introduced as soon as both of its vertices are introduced. In this case, the step of any edge in the

step-augmented graph is the maximum vertex value. For example, in Figure 4.2.1, we have

E′1 = ∅, E′2 = E′3 = {({1, 2}, 2)}, E′4 = {({1, 2}, 2), ({1, 4}, 4), ({2, 4}, 4), ({3, 4}, 4)}.

In general step-augmented graphs, though, the step need not equal the max vertex, as we see next.
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Figure 4.2.1: Upper, left four : Step-augmented graph sequence from Ex. 4.2.2. At each step n, the
step value is always at least the maximum vertex index. Upper, right two: Two graphs with the
same probability under vertex exchangeability. Lower, left four : Step-augmented graph sequence
from Ex. 4.2.3. Lower, right two: Two graphs with the same probability under edge exchangeability.

Example 4.2.3. Suppose we have a graph given by the edge sequence (see Figure 4.2.1):

E1 = E2 = {{2, 5}, {5, 5}}, E3 = E2 ∪ {{2, 5}}, E4 = E3 ∪ {{1, 6}}.

The step-augmented graph E′4 is {({2, 5}, 1), ({5, 5}, 1), ({2, 5}, 3), ({1, 6}, 4)}.

Roughly, a random graph sequence is edge exchangeable if its distribution is invariant to finite

permutations of the steps. Let π be a permutation of the integers [n]. For a step-augmented edge

set E′n = {(e1, s1), . . . , (em, sm)}, let π(E′n) = {(e1, π(s1)), . . . , (em, π(sm))}.

Definition 4.2.4. Consider the random graph sequence (Gn)n, where Gn has step-augmented edges

E′n and Vn are the active vertices of En. (Gn)n is (infinitely) edge exchangeable if for every n ∈ N

and for every permutation π of the steps [n], Gn
d
= G̃n, where G̃n has step-augmented edges π(E′n)

and associated active vertices.

See Figure 4.2.1 for visualizations of both vertex exchangeability and edge exchangeability. It

remains to show that there are non-trivial models that are edge exchangeable (Section 4.3) and that

edge-exchangeable models admit sparse graphs (Section 4.5).
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4.3 Edge-exchangeable graph frequency models

We next demonstrate that a wide class of models, which we call graph frequency models, exhibit edge

exchangeability. Consider a latent infinity of vertices indexed by the positive integers N = {1, 2, . . .},

along with an infinity of edge labels (θ{i,j}), each in a set Θ, and positive edge rates (or frequencies)

(w{i,j}) in R+. We allow both the (θ{i,j}) and (w{i,j}) to be random, though this is not mandatory.

For instance, we might choose θ{i,j} = (i, j) for i ≤ j, and Θ = R2. Alternatively, the θ{i,j} could be

drawn iid from a continuous distribution such as Unif[0, 1]. For any choice of (θ{i,j}) and (w{i,j}),

W :=
∑

{i,j}:i,j∈N

w{i,j}δθ{i,j} (4.1)

is a measure on Θ. Moreover, it is a discrete measure since it is always atomic. If either (θ{i,j})

or (w{i,j}) (or both) are random, W is a discrete random measure on Θ since it is a random,

discrete-measure-valued element. Given the edge rates (or frequencies) (w{i,j}) in W , we next show

some natural ways to construct edge-exchangeable graphs.

Single edge per step If the rates (w{i,j}) are normalized such that
∑
{i,j}:i,j∈N w{i,j} = 1, then

(w{i,j}) is a distribution over all possible vertex pairs. In other words,W is a probability measure. We

can form an edge-exchangeable graph sequence by first drawing values for (w{i,j}) and (θ{i,j})—and

setting E0 = ∅. We recursively set En+1 = En ∪ {e}, where e is an edge {i, j} chosen from the

distribution (w{i,j}). This construction introduces a single edge in the graph each step, although it

may be a duplicate of an edge that already exists. Therefore, this technique generates multigraphs

one edge at a time. Since the edge every step is drawn conditionally iid given W , we have an

edge-exchangeable graph.

Multiple edges per step Alternatively, the rates (w{i,j}) may not be normalized. Then W may

not be a probability measure. Let f(m|w) be a distribution over non-negative integers m given some

rate w ∈ R+. We again initialize our sequence by drawing (w{i,j}) and (θ{i,j}) and setting E0 = ∅.

In this case, recursively, on the nth step, start by setting F = ∅. For every possible edge e = {i, j},
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we draw the multiplicity of the edge e in this step as me
ind∼ f(·|we) and add me copies of edge e

to F . Finally, En+1 = En ∪ F . This technique potentially introduces multiple edges in each step,

in which edges themselves may have multiplicity greater than one and may be duplicates of edges

that already exist in the graph. Therefore, this technique generates multigraphs, multiple edges at a

time. If we restrict f and W such that finitely many edges are added on every step almost surely,

we have an edge-exchangeable graph, as the edges in each step are drawn conditionally iid given W .

Given a sequence of edge sets E0, E1, . . . constructed via either of the above methods, we can

form a binary graph sequence Ē0, Ē1, . . . by setting Ēi to have the same edges as Ei except with

multiplicity 1. Although this binary graph is not itself edge exchangeable, it inherits many of the

properties (such as sparsity, as shown in Section 4.5) of the underlying edge-exchangeable multigraph.

The choice of the distribution on the measure W has a strong influence on the properties of the

resulting edge-exchangeable graph sampled via one of the above methods. For example, one choice is

to set w{i,j} = wiwj , where the (wi)i are a countable infinity of random values generated according

to a Poisson point process (PPP). We say that (wi)i is distributed according to a Poisson point

process parameterized by rate measure ν, (wi)i ∼ PPP(ν), if (a) #{i : wi ∈ A} ∼ Poisson(ν(A)) for

any set A with finite measure ν(A) and (b) #{i : wi ∈ Aj} are independent random variables across

any finite collection of disjoint sets (Aj)
J
j=1. In Section 4.5 we examine a particular example of this

graph frequency model, and demonstrate that sparsity is possible in edge-exchangeable graphs.

4.4 Related work and connection to nonparametric Bayes

Given a unique label θi for each vertex i ∈ N, and denoting gij = gji to be the number of undirected

edges between vertices i and j, the graph itself can be represented as the discrete random measure

G =
∑
i,j gijδ(θi,θj) on R2

+. A different notion of exchangeability for graphs than the ones in

Section 4.2 can be phrased for such atomic random measures: a point process G on R2
+ is (jointly)

exchangeable if, for all finite permutations π of N and all h > 0,

G(Ai ×Aj) d
= G(Aπ(i) ×Aπ(j)), for (i, j) ∈ N2, where Ai := [h · (i− 1), h · i].
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This form of exchangeability, which we refer to as Kallenberg exchangeability, can intuitively be

viewed as invariance of the graph distribution to relabeling of the vertices, which are now embedded

in R2
+. As such it is analogous to vertex exchangeability, but for discrete random measures (Caron

and Fox, 2017, Sec. 4.1). Exchangeability for random measures was introduced by Aldous (Aldous,

1985), and a representation theorem was given by Kallenberg (Kallenberg, 1990, 2005, Ch. 9). The

use of Kallenberg exchangeability for modeling graphs was first proposed by Caron and Fox (2017),

and then characterized in greater generality by Veitch and Roy (2015) and Borgs et al. (2018). Edge

exchangeability is distinct from Kallenberg exchangeability, as shown by the following example.

Example 4.4.1 (Edge exchangeable but not Kallenberg exchangeable). Consider the graph frequency

model developed in Section 4.3, with w{i,j} = (ij)−2 and θ{i,j} = {i, j}. Since the edges at each step

are drawn iid given W , the graph sequence is edge exchangeable. However, the corresponding graph

measure G =
∑
i,j nijδ(i,j) (where nij = nji ∼ Binom(N, (ij)−2)) is not Kallenberg exchangeable,

since the probability of generating edge {i, j} is directly related to the positions (i, j) and (j, i) in R2
+

of the corresponding atoms in G (in particular, the probability is decreasing in ij).

Our graph frequency model is reminiscent of the Caron and Fox (2017) generative model, but

has a number of key differences. At a high level, this earlier model generates a weight measure

W =
∑
i,j wijδ(θi,θj) (Caron and Fox (2017) used, in particular, the outer product of a completely

random measure), and the graph measure G is constructed by sampling gij once given wij for each

pair i, j. To create a finite graph, the graph measure G is restricted to the subset [0, y]× [0, y] ⊂ R2
+

for 0 < y < ∞; to create a projective growing graph sequence, the value of y is increased. By

contrast, in the analogous graph frequency model of the present work, y is fixed, and we grow the

network by repeatedly sampling the number of edges gij between vertices i and j and summing the

result. Thus, in the Caron and Fox (2017) model, a latent infinity of vertices (only finitely many of

which are active) are added to the network each time y increases. In our graph frequency model,

there is a single collection of latent vertices, which are all gradually activated by increasing the

number of samples that generate edges between the vertices. See Figure 4.4.1 for an illustration.

Increasing n in the graph frequency model has the interpretation of both (a) time passing and (b)

77



(a) Graph frequency model (fixed y, n steps) (b) Caron–Fox, PPP on [0, y]× [0, y] (1 step, y grows)

Figure 4.4.1: A comparison of a graph frequency model (Section 4.3 and Equation (4.2)) and the
generative model of Caron and Fox (2017). Any interval [0, y] contains a countably infinite number
of atoms with a nonzero weight in the random measure; a draw from the random measure is plotted
at the top (and repeated on the right side). Each atom corresponds to a latent vertex. Each
point (θi, θj) corresponds to a latent edge. Darker point colors on the left occur for greater edge
multiplicities. On the left, more latent edges are instantiated as more steps n are taken. On the
right, the edges within [0, y]2 are fixed, but more edges are instantiated as y grows.

new individuals joining a network because they have formed a connection that was not previously

there. In particular, only latent individuals that will eventually join the network are considered.

This behavior is analogous to the well-known behavior of other nonparametric Bayesian models such

as, e.g., a Chinese restaurant process (CRP). In this analogy, the Dirichlet process (DP) corresponds

to our graph frequency model, and the clusters instantiated by the CRP correspond to the vertices

that are active after n steps. In the DP, only latent clusters that will eventually appear in the

data are modeled. Since the graph frequency setting is stationary like the DP/CRP, it may be

more straightforward to develop approximate Bayesian inference algorithms, e.g., via truncation

(Campbell et al., 2016).

Edge exchangeability first appeared in work by Crane and Dempsey (2015a,b); Williamson (2016),

and Broderick and Cai (2015a,b); Cai and Broderick (2015). Broderick and Cai (2015a,b) established
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the notion of edge exchangeability used here and provided characterizations via exchangeable

partitions and feature allocations, as in Appendix C.3. Broderick and Cai (2015a); Cai and Broderick

(2015) developed a frequency model based on weights (wi)i generated from a Poisson process and

studied several types of power laws in the model. Crane and Dempsey (2015a) established a similar

notion of edge exchangeability in the context of a larger statistical modeling framework. Crane and

Dempsey (2015a,b) provided sparsity and power law results for the case where the weights (wi)i are

generated from a Pitman-Yor process and power law degree distribution simulations. Williamson

(2016) described a similar notion of edge exchangeability and developed an edge-exchangeable model

where the weights (wi)i are generated from a Dirichlet process, a mixture model extension, and

an efficient Bayesian inference procedure. In work concurrent to the present chapter, Crane and

Dempsey (2016) re-examined edge exchangeability, provided a representation theorem, and studied

sparsity and power laws for the same model based on Pitman-Yor weights. By contrast, we here

obtain sparsity results across all Poisson point process-based graph frequency models of the form

in Equation (4.2) below, and use a specific three-parameter beta process rate measure only for

simulations in Section 4.6.

4.5 Sparsity in Poisson process graph frequency models

We now demonstrate that, unlike vertex exchangeability, edge exchangeability allows for sparsity in

random graph sequences. We develop a class of sparse, edge-exchangeable multigraph sequences via

the Poisson point process construction introduced in Section 4.3, along with their binary restrictions.

Model Let W be a Poisson process on [0, 1] with a nonatomic, σ-finite rate measure ν satisfying

ν([0, 1]) = ∞ and
∫ 1

0
wν(dw) < ∞. These two conditions on ν guarantee that W is a countably

infinite collection of rates in [0, 1] and that
∑
w∈W w <∞ almost surely. We can use W to construct

the set of rates: w{i,j} = wiwj if i 6= j, and w{i,i} = 0. The edge labels θ{i,j} are unimportant in

characterizing sparsity, and so can be ignored.

To use the multiple-edges-per-step graph frequency model from Section 4.3, we let f(·|w) be
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Bernoulli with probability w. Since edge {i, j} is added in each step with probability wiwj , its

multiplicity M{i,j} after n steps has a binomial distribution with parameters n,wiwj . Note that

self-loops are avoided by setting w{i,i} = 0. Therefore, the graph after n steps is described by:

W ∼ PPP(ν) M{i,j}
ind∼ Binom(n,wiwj) for i < j ∈ N. (4.2)

As mentioned earlier, this generative model yields an edge-exchangeable graph, with edge multiset

En containing {i, j} with multiplicityM{i,j}, and active vertices Vn = {i :
∑
jM{i,j} > 0}. Although

this model generates multigraphs, it can be modified to sample a binary graph (V̄n, Ēn) by setting

V̄n = Vn and Ēn to the set of edges {i, j} such that {i, j} has multiplicity ≥ 1 in En. We can express

the number of vertices and edges, in the multi- and binary graphs respectively, as

|V̄n|= |Vn|=
∑

i

1


∑

j 6=i

M{i,j} > 0


 , |En| =

1

2

∑

i 6=j

M{i,j}, |Ēn| =
1

2

∑

i 6=j

1
(
M{i,j} > 0

)
.

Moments Recall that a sequence of graphs is considered sparse if |En| = o(|Vn|2). Thus, sparsity

in the present setting is an asymptotic property of a random graph sequence. Rather than consider

the asymptotics of the (dependent) random sequences |En| and |Vn| in concert, Definition 4.5.1 allows

us to consider the asymptotics of their first moments, which are deterministic sequences and can be

analyzed separately. We use ∼ to denote asymptotic equivalence, i.e., an ∼ bn ⇐⇒ limn→∞
an
bn

= 1.

For details on our asymptotic notation and proofs for this section, see Appendix C.4.

Lemma 4.5.1. The number of vertices and edges for both the multi- and binary graphs satisfy

|V̄n| = |Vn| a.s.∼ E
(
|Vn|

)
, |En| a.s.∼ E

(
|En|

)
, |Ēn| a.s.∼ E

(
|Ēn|

)
, n→∞.

Thus, we can examine the asymptotic behavior of the random numbers of edges and vertices by

examining the asymptotic behavior of their expectations, which are provided by Definition 4.5.2.
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Lemma 4.5.2. The expected numbers of vertices and edges for the multi- and binary graphs are

E
(
|V̄n|

)
= E

(
|Vn|

)
=

∫ [
1− exp

(
−
∫

(1− (1− wv)n)ν(dv)

)]
ν(dw),

E
(
|En|

)
=
n

2

∫∫
wv ν(dw)ν(dv), E

(
|Ēn|

)
=

1

2

∫∫
(1− (1− wv)n) ν(dw)ν(dv).

Sparsity We are now equipped to characterize the sparsity of this random graph sequence:

Theorem 4.5.3. Suppose ν has a regularly varying tail, i.e., there exist α ∈ (0, 1) and ` : R+ → R+

s.t.

∫ 1

x

ν(dw) ∼ x−α`(x−1), x→ 0 and ∀c > 0, lim
x→∞

`(cx)

`(x)
= 1.

Then as n→∞,

|Vn| a.s.= Θ(nα`(n)), |En| a.s.= Θ(n), |Ēn| a.s.= O

(
`(n1/2) min

(
n

1+α
2 , `(n)n

3α
2

))
.

Definition 4.5.3 implies that the multigraph is sparse when α ∈ (1/2, 1), and that the restriction

to the binary graph is sparse for any α ∈ (0, 1). See Remark C.4.8 for a discussion. Thus,

edge-exchangeable random graph sequences allow for a wide range of sparse and dense behavior.

4.6 Simulations

In this section, we explore the behavior of graphs generated by the model from Section 4.5 via

simulation, with the primary goal of empirically demonstrating that the model produces sparse

graphs. We consider the case when the Poisson process generating the weights in Equation (4.2) has

the rate measure of a three-parameter beta process (3-BP) on (0, 1) (Broderick et al., 2012; Teh and

Görür, 2009):

ν(dw) = γ
Γ(1 + β)

Γ(1− α)Γ(α+ β)
w−1−α(1− w)α+β−1 dw, (4.3)
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(a) Multigraph edges vs. active vertices

(b) Binary graph edges vs. active vertices

Figure 4.6.1: Data simulated from a graph frequency model with weights generated according to a
3-BP. Colors represent different random draws. The dashed line has a slope of 2.

with mass γ > 0, concentration β > 0, and discount α ∈ (0, 1). In order for the 3-BP to have

finite total mass
∑
j wj <∞, we require that β > −α. We draw realizations of the weights from a

3-BP(γ, β, α) according to the stick-breaking representation given by Broderick, Jordan, and Pitman

(2012). That is, the wi are the atom weights of the measure W for

W =

∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1− V (`)
i,j )δψi,j , Ci

iid∼ Pois(γ),

V
(`)
i,j

ind∼ Beta(1− α, β + `α), ψi,j
iid∼ B0

and any continuous (i.e., non-atomic) choice of distribution B0.

Since simulating an infinite number of atoms is not possible, we truncate the outer summation

in i to 2000 rounds, resulting in
∑2000
i=1 Ci weights. The parameters of the beta process were fixed to

γ = 3 and θ = 1, as they do not influence the sparsity of the resulting graph frequency model, and

we varied the discount parameter α. Given a single draw W (at some specific discount α), we then
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simulated the edges of the graph, where the number of Bernoulli draws N varied between 50 and

2000.

Figure 4.6.1a shows how the number of edges varies versus the total number of active vertices

for the multigraph, with different colors representing different random seeds. To check whether the

generated graph was sparse, we determined the exponent by examining the slope of the data points

(on a log-scale). In all plots, the black dashed line is a line with slope 2. In the multigraph, we found

that for the discount parameter settings α = 0.6, 0.7, the slopes were below 2; for α = 0, 0.3, the

slopes were greater than 2. This corresponds to our theoretical results; for α < 0.5 the multigraph

is dense with slope greater than 2, and for α > 0.5 the multigraph is sparse with slope less than 2.

Furthermore, the sparse graphs exhibit power law relationships between the number of edges and

vertices, i.e., |EN | a.s.∼ c |VN |b, N →∞, where b ∈ (1, 2), as suggested by the linear relationship in

the plots between the quantities on a log-scale. Note that there are necessarily fewer edges in the

binary graph than in the multigraph, and thus this plot implies that the binary graph frequency

model can also capture sparsity. Figure 4.6.1b confirms this observation; it shows how the number of

edges varies with the number of active vertices for the binary graph. In this case, across α ∈ (0, 1),

we observe slopes that are less than 2. This agrees with our theory from Section 4.5, which states

that the binary graph is sparse for any α ∈ (0, 1).

4.7 Discussion

We have proposed an alternative form of exchangeability for random graphs, which we call edge

exchangeability, in which the distribution of a graph sequence is invariant to the order of the edges. We

have demonstrated that edge-exchangeable graph sequences, unlike traditional vertex-exchangeable

sequences, can be sparse by developing a class of edge-exchangeable graph frequency models that

provably exhibit sparsity. Simulations using edge frequencies drawn according to a three-parameter

beta process confirm our theoretical results regarding sparsity. Our results suggest that a variety of

future directions would be fruitful—including theoretically characterizing different types of power

laws within graph frequency models, characterizing the use of truncation within graph frequency

83



models as a means for approximate Bayesian inference in graphs, and understanding the full range

of distributions over sparse, edge-exchangeable graph sequences.
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Chapter 5

Multi-fidelity Monte Carlo: a

pseudo-marginal approach

Markov chain Monte Carlo (MCMC) is an established approach for uncertainty quantification and

propagation in scientific applications. A key challenge in applying MCMC to scientific domains is

computation: the target density of interest is often a function of expensive computations, such as a

high-fidelity physical simulation, an intractable integral, or a slowly-converging iterative algorithm.

Thus, using an MCMC algorithms with an expensive target density becomes impractical, as these

expensive computations need to be evaluated at each iteration of the algorithm. In practice, these

computations often approximated via a cheaper, low-fidelity computation, leading to bias in the

resulting target density. Multi-fidelity MCMC algorithms combine models of varying fidelities in

order to obtain an approximate target density with lower computational cost. In this chapter, we

describe a class of asymptotically exact multi-fidelity MCMC algorithms for the setting where a

sequence of models of increasing fidelity can be computed that approximates the expensive target

density of interest. We take a pseudo-marginal MCMC approach for multi-fidelity inference that

utilizes a cheaper, randomized-fidelity unbiased estimator of the target fidelity constructed via

random truncation of a telescoping series of the low-fidelity sequence of models. Finally, we discuss
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and evaluate the proposed multi-fidelity MCMC approach on several applications, including log-

Gaussian Cox process modeling, Bayesian ODE system identification, PDE-constrained optimization,

and Gaussian process parameter inference.

5.1 Introduction

Simulation and computational modeling play a key role in science, engineering, economics, and many

other areas. When these models are high-quality and accurate, they are important for scientific

discovery, design, and data-driven decision making. However, the ability to accurately model

complex physical phenomena often comes with a significant cost—many models involve expensive

computations that then need to be evaluated repeatedly in, for instance, a sampling or optimization

algorithm. Examples of model classes with expensive computations include intractable integrals or

sums, expensive quantum simulations (Troyer and Wiese, 2005), expensive numerical simulations

arising from partial differential equations (PDEs) (Raissi et al., 2017) and large systems of ordinary

equations (ODEs).

In many situations, one has the ability to trade off computational cost against fidelity or accuracy

in the result. Such a tradeoff might arise from the choice of discretization or the number of basis

functions when solving a PDE, or the number of quadrature points when estimating an integral. It

is often possible to leverage lower-fidelity models to help accelerate high-quality solutions, e.g., by

using multigrid methods (Hackbusch, 2013) for spatial discretizations. More generally, multi-fidelity

methods combine multiple models of varying cost and fidelity to accelerate computational algorithms

and have been applied to solving inverse problems (Cui et al., 2015; Higdon et al., 2002; Raissi

et al., 2017), trust region optimization (Alexandrov et al., 1998; Arian et al., 2000; Fahl and Sachs,

2003; March and Willcox, 2012; Robinson et al., 2008), Bayesian optimization (Brevault et al., 2020;

Gramacy and Lee, 2009; Jones et al., 1998; Li et al., 2020; Song et al., 2019; Wu et al., 2020),

Bayesian quadrature (Gessner et al., 2020; Xi et al., 2018), and sequential learning (Gundersen

et al., 2021; Palizhati et al., 2022).

One critically important tool for scientific and engineering computation is Markov chain Monte
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(a) Trapezoid rule with 2k trapezoids (k = 1, 2, 3). Sequence trapezoid quadrature estimates Ik, where Ik is
the trapzoid rule with 2k trapezoids.

(b) Lotka-Volterra ODE solutions, dt = 1/k. Lotka-Volterra ODE solutions for prey u(t) (blue) and predator
v(t) (red) using Euler’s method with step size dt.

Figure 5.1.1: Examples of low-fidelity sequences of models.

Carlo (MCMC), which is widely used for uncertainty quantification, optimization, and integration.

MCMC methods are recipes for constructing a Markov chain with some desired target distribution

as the limiting distribution. Pseudo-random numbers are used to simulate transitions of the Markov

chain in order to produce samples from the target distribution. However, MCMC often becomes

impractical for high-fidelity models, where a single step of the Markov chain may, for instance, involve

a numerical simulation that takes hours or days to complete. Multi-fidelity methods for MCMC

focus on constructing Markov chain transition operators that are sometimes able to use inexpensive
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low-fidelity evaluations instead of expensive high-fidelity evaluations. The goal is to increase the

effective number of samples generated by the algorithm, given a constrained computational budget.

A large focus of the multi-fidelity MCMC literature is on two-stage Metropolis-Hastings (M-H)

methods (Christen and Fox, 2005; Efendiev et al., 2006), which use a single low-fidelity model for

early rejection of a proposed sample, thereby often short-circuiting the evaluation of the expensive,

high-fidelity model.

However, there are several limitations of two-stage multi-fidelity Monte Carlo. First, in many

applications, a hierarchy of cheaper, low-fidelity models is available; for instance, in the case of

integration, k-point quadrature estimates form a hierarchy of low-fidelity models, and in the case

of a PDE, varying the discretization. Thus, the two-stage approach does not fully utilize the

availability of a hierarchy of fidelities and may be more suitable for settings where the high- and

low-fidelity models are not hierarchically related, e.g., semi-empirical methods vs. Hartree-Fock in

computational chemistry. In addition, in such applications, there is often a limiting model of interest,

such as a continuous function that the low-fidelity discretizations approximate. Two-stage MCMC

does not asymptotically sample from this limiting target density and will at best sample from an

approximation of the biased, high-fidelity posterior. Finally, the two-stage method is unnatural to

generalize to more sophisticated MCMC algorithms such as slice sampling and Hamiltonian Monte

Carlo (HMC).

We propose a class of multi-fidelity MCMC methods designed for applications with a hierarchy

of low-fidelity models available. More specifically, we assume access to a sequence of low-fidelity

models that converge to a “perfect-fidelity” model in the limit. Within an MCMC algorithm, we

can approximate the perfect-fidelity target density with an unbiased estimator constructed from a

randomized truncation of the infinite telescoping series of low-fidelity target densities. This class

of multi-fidelity MCMC is an example of a pseudo-marginal MCMC (PM-MCMC) algorithm—the

unbiased estimator essentially guarantees that the algorithm is asymptotically exact in that the

limiting distribution recovers the perfect-fidelity target distribution as its marginal distribution.

Our approach introduces the fidelity of a model as an auxiliary random variable that is evolved

separately from the target variable according to its own conditional target distribution; this technique
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can be used in conjunction with any suitable MCMC update that leaves the conditional update

for the target variable of interest invariant, such as M-H, slice sampling, elliptical slice sampling,

or Hamiltonian Monte Carlo. We apply the pseudo-marginal multi-fidelity MCMC approach to

several problems, including log-Gaussian Cox process modeling, Bayesian ODE system identification,

PDE-constrained optimization, and Gaussian process parameter inference.

5.1.1 Related work

Multi-fidelity MCMC methods are commonly applied in a two-stage procedure, where the goal is

to reduce the computational cost of using a single expensive high-fidelity model by using a cheap

low-fidelity model as a low-pass filter for a delayed acceptance/rejection algorithm (Christen and

Fox, 2005; Cui et al., 2015; Efendiev et al., 2006); see Peherstorfer et al. (2018) for a survey. Higdon

et al. (2002) propose coupling a high-fidelity Markov chain with a low-fidelity Markov chain via a

product chain. In constrast, our approach aims to sample from a “perfect-fidelity” target density

while reducing computational cost; two-stage MCMC algorithms result in biased estimates with

respect to this target density. A related class of methods is multilevel Monte Carlo (Dodwell et al.,

2015; Giles, 2008, 2013; Warne et al., 2021), which uses a hierarchy of multi-fidelity models for

Monte Carlo estimation by expressing the expectation of a high-fidelity model as a telescoping sum

of low-fidelity models. Dodwell et al. (2015) use the M-H algorithm to form the multilevel Monte

Carlo estimates, simulating from a separate Markov chain for each level of the telescoping sum.

In practice multilevel Monte carlo requires choosing a finite number of fidelities, inducing bias in

the estimator with respect to the (limiting) perfect-fidelity model. In contrast, our method uses a

randomized fidelity within a single Markov chain with the perfect-fidelity model as the target.

Our approach applies pseudo-marginal MCMC to multi-fidelity problems. There is a rich

literature developing pseudo-marginal MCMC methods (Andrieu and Roberts, 2009; Beaumont,

2003) for so-called “doubly-intractable” likelihoods, which are likelihoods that are intractable to

evaluate. Several approaches in the pseudo-marginal MCMC literature are particular relevant to

our work. The first are the PM-MCMC methods introduced by Lyne et al. (2015), which describes

a class of pseudo-marginal M-H methods that use Russian roulette estimators to obtain unbiased
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estimators of the likelihood. However, this method samples the variable of interest jointly with the

auxillary randomness, which often leads to sticking.

Alternatively, several methods have considered sampling the randomness separately. The idea of

clamping random numbers is explored in depth by Andrieu et al. (2010) and Murray and Graham

(2016); the latter applies to this pseudo-marginal slice sampling. In particular, our approach applies

these ideas to the specific setting of multi-fidelity models, where the random fidelity is treated as an

auxillary variable. Finally, while our approach applies to doubly-intractable problems, we are also

motivated by a larger class of multi-fidelity problems studied in the computational sciences that may

not even be inference problems, such as quantum simulations and PDE-constrained optimization.

5.2 Multi-fidelity MCMC

Monte Carlo methods approximate integrals and sums that can be expressed an expectation:

Eπ(h(θ)) =

∫
h(θ)π(θ) dθ ≈ 1

T

T∑

t=1

h(θ(t)), where θ(t) ∼ π, (5.1)

and where π : Θ → R+ is the target density that may only be known up to a constant, h(θ) is a

function of interest, and {θ(t)}Tt=1 are samples from π. Markov chain Monte Carlo methods are then

used to generate samples θ(t) from π by simulating from a Markov chain with target π.

In many settings, pointwise evaluations of the target function π(θ) are expensive or even

intractable; from here on we will assume that the goal is to compute statistics of a quantity of interest

h(θ) with respect to a perfect-fidelity target density π∞(θ). In practice, the estimate in Equation (5.1)

is instead estimated using a cheaper, low-fidelity density πk(θ), where k ∈ N := {1, 2, . . .}. In

particular, we consider settings where there is a sequence of low-fidelity densities available that

converge to the target, i.e., πk(θ)
k→∞−→ π∞(θ). We assume that as k increases, the model becomes

higher in fidelity (with respect to π∞) but more costly to evaluate, increasing in expense super-linearly

with k.

For instance, π∞ could represent a target density that depends on an intractable integral, the
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solution of a PDE, the solution of a large system of ODEs, the solution of a large system of linear

equations, or the minimizer of a function. Thus, a typical evaluation of π∞ requires an approximation

at a fidelity k with a tolerable level of bias for a given computational budget. Here increasing k

could correspond to finer discretizations of differential equations, increasing numbers of quadrature

points, or performing a larger number of iterations in a linear solver or optimization routine.

In the multi-fidelity setting, the goal is to combine several models of varying fidelity within an

MCMC algorithm to reduce the computational cost of estimating Equation (5.1). In this chapter,

we describe a class of MCMC algorithms that leverages the sequence of low-fidelity models πk. Our

strategy for multi-fidelity MCMC (MF-MCMC) will be to construct an unbiased estimator of π∞(θ)

using random choices of the fidelity K and then to include K in the Markov chain as an auxiliary

variable. By carefully constructing such a Markov chain, it will be possible to asymptotically

estimate the functional in Equation (5.1) as though the samples were taken from the perfect-fidelity

model; each step of the Markov chain will nevertheless only require a finite amount of computation.

Finally, our approach allows us to essentially plug in any valid MCMC algorithm, and we apply this

strategy to develop multi-fidelity variants of a number of MCMC algorithms, such as M-H and slice

sampling.

5.2.1 Pseudo-marginal MCMC for the multi-fidelity setting

Pseudo-marginal MCMC (Andrieu and Roberts, 2009; Beaumont, 2003) is a class of auxillary-

variable MCMC algorithms that replaces the target density π(θ) with an estimator π̂(θ) that is

a function of a random variable. If the estimator is nonnegative and unbiased, i.e., for all θ ∈ Θ,

π̂(θ) ≥ 0 and E[π̂(θ)] = π(θ), then MCMC transitions that use the estimator still have π(θ) as their

invariant distribution. This property is sometimes referred to as “exact-approximate” MCMC as the

transitions are approximate but the limiting distribution is exact. Estimators can be constructed

from a variety of methods, including particle filtering (Andrieu and Roberts, 2009); our approach

will use randomized series truncations, which has been consider in pseudo-marginal MCMC methods

such as Lyne et al. (2015), Georgoulas et al. (2017), and Biron-Lattes et al. (2022).

We now apply the pseudo-marginal approach to the multi-fidelity setting. Here the target density
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estimator arises from a random choice of the fidelity K ∈ N that is governed by a distribution µ on

N. We denote the estimator using π̂K(θ) to make the dependence on the random fidelity K explicit.

The estimator is constructed such that it is unbiased with respect to µ, i.e.,

∞∑

k=1

µ(k)π̂k(θ) = π∞(θ) . (5.2)

The distribution µ is also constructed by the user: ideally, the estimator π̂K(θ) will prefer smaller

values of K while having sufficiently low variance as to allow the Markov chain to mix effectively.

Thus the simulations can be run at inexpensive low-fidelities, while the estimates will be as though

the perfect-fidelity model were being used.

The standard pseudo-marginal MCMC approach is to construct a Markov chain that has the

following joint density as its stationary distribution:

π(θ,K) = µ(K)π̂K(θ). (5.3)

Observe that while Equation (5.3) does not depend on the perfect-fidelity target density π∞, it

returns the desired marginal π∞ via Equation (5.2). As a concrete example, a pseudo-marginal

M-H algorithm generates a new state θ′ and fidelity K ′ jointly using q(θ′; θ) as the proposal

for θ′, q(K ′;K) = µ(K ′) as the proposal distribution for the fidelity, and accepts/rejects the state

according to

a =
π(θ′,K ′)q(θ; θ′)q(K;K ′)

π(θ,K)q(θ′; θ)q(K ′;K)
=
π̂K′(θ

′)q(θ; θ′)

π̂K(θ)q(θ′; θ)
, (5.4)

where the equality holds since the distribution terms for K and K ′ cancel. Note that the right-hand

side of Equation (5.4) is the standard M-H ratio but that the target density π is replaced with the

estimator π̂K .

However, standard pseudo-marginal MCMC using joint proposals of the state and fidelity can

“get stuck” when the estimator is noisy and fail to accept new states. Thus, we apply the approach

in Murray and Graham (2016) that augments the Markov chain to include the randomness of the
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estimator via a separate update; here the randomness of the estimator arises from the fidelity K.

Concretely, we construct a Markov chain that simulates from Equation (5.3) by alternating sampling

between the conditional target densities π(K|θ) and π(θ|K) (steps 5 and 6 of Algorithm 5.3.1,

respectively). We refer to this strategy as multi-fidelity MCMC (MF-MCMC), since by conditioning

onK = k, the update for the state θ becomes a standard deterministic update applied to a low-fidelity

model π̂k(θ), and any appropriate MCMC update can be used here, making it straightforward to

use complex MCMC methods, such as slice sampling and HMC. Similarly, any suitable MCMC

update for the fidelity K can be used using the conditional target π(K|θ).

Many techniques can be used to construct an unbiased estimator of π∞ with randomness K; we

describe a general approach in the next section. However, it is generally difficult to guarantee the

estimator is nonnegative, as required by pseudo-marginal MCMC. One technique considered by Lin

et al. (2000) and Lyne et al. (2015) is to instead sample from the target distribution induced by the

absolute value of the estimator and applying a sign-correction to the final Monte Carlo estimate

in Equation (5.1), an approach borrowed from the quantum Monte Carlo literature where it is

necessary for modeling fermionic particles. This approach has been applied to the M-H algorithm,

but we note that this general approach can be applied much more broadly, as we do in this work.

In problems where the estimator may be negative, we sample from the conditional target

distributions using the absolute value of the estimator |π̂K(θ)|, and we denote these conditionals

with π̃(K | θ) ∝ µ(K)|π̂K(θ)| and π̃(θ|K = k) ∝ |π̂k(θ)|. The estimate in Equation (5.1) is then

corrected using the signs σ(θ, k) of evaluations of π̂k(θ),

∫
h(θ)π(θ) dθ ≈

∑T
t=1 h(θ(t))σ(θ(t),K(t))
∑T
t=1σ(θ(t),K(t))

=: ÎT , (5.5)

where {(θ(t),K(t))}Tt=1 are the sampled values from the joint distribution π̃(θ,K) ∝ |π̂K(θ)|µ(K).

Importantly, the sign-corrected estimate still asymptotically leads to the desired estimate of the

functional of interest. Let σ(θ, k) denote the sign of the estimator such that π̂k(θ) = σ(θ, k)|π̂k(θ)|.

The estimator ÎT in Equation (5.5) is formed using a Monte Carlo estimate of the functional after
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expanding it into its joint distribution, i.e.,

∫
h(θ)π∞(θ)dθ =

∫ ∞∑

k=1

h(θ)π̂k(θ)µ(k)dθ =

∫ ∑∞
k=1 h(θ)σ(θ, k)π̃(θ, k)dθ∫ ∑∞
k=1 σ(θ, k)π̃(θ, k)dθ

. (5.6)

The full multi-fidelity MCMC algorithm with sign correction summarized in Algorithm 5.3.1.

We note that while the Markov chain no longer converges to a target with the marginal π∞, the

final estimate after sign-correction—which is the downstream goal of interest—converges to the

quantity of interest due to Equation (5.6). While this may seem limiting if one is interested in the

posterior itself, useful unbiased posterior summaries may be still be obtained via the functional, such

as the posterior mean, variance, quantiles, and histograms that may be used to visualize marginal

distributions.

5.3 Unbiased low-fidelity estimators

via randomized truncations

In this section, we discuss how to construct an unbiased estimator of π∞(θ), given a sequence

of low-fidelity likelihoods with the property πk(θ) → π∞(θ) as k → ∞. This estimator has the

property that it requires a finite amount of computation with probability one, and it also has a

tunable amount of expected computation per estimate, i.e., it uses low-fidelity density evaluations

to estimate the perfect-fidelity target density. The central idea of this estimator has been used for

decades, going back to John von Neumann and Stanislaw Ulam. More recently it has found use in

applications of inference and optimization in related work such as Glynn and Rhee (2014), Lyne

et al. (2015), Beatson and Adams (2019), and Jacob et al. (2020).

First note that we can express the perfect-fidelity model as a telescoping sum of low-fidelity

models: let π0(θ) = 0 and write

π∞(θ) =

∞∑

k=1

πk(θ)− πk−1(θ). (5.7)
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The estimator π̂K is then constructed by taking a random truncationK ∼ µ of the infinite telescoping

series. The sampled terms in the sum are then reweighted to ensure the estimator remains unbiased:

π̂K(θ) =

K∑

k=1

wk,K(πk(θ)− πk−1(θ)) . (5.8)

Two approaches are commonly used to ensure that the resulting estimator is unbiased: weighted

single-term estimators and Russian roulette estimators. The single-term estimator (Lyne et al., 2015)

is constructed by importance sampling a term from the series in Equation (5.7): the truncation level

is drawn as K ∼ µ, and the Kth term is used to form the estimate

π̂K(θ) = µ(K)−1(πK(θ)− πK−1(θ)) . (5.9)

Thus, the weight in Equation (5.8) is Wk,K = µ(K)−1
1(K = k). In the Russian roulette es-

timator, the remaining terms in the estimator are reweighted by their survival probabilities,

i.e., Wk,K = (1−∑k−1
k′=1 µ(k′))−1

1(K ≥ k). The distribution µ controls the number of terms in the

estimator, and a good proposal distribution should match the tails of the sequence of low-fidelity

densities (Beatson and Adams, 2019; Lyne et al., 2015; Potapczynski et al., 2021).

The ability to use cheaper models is a key feature of multi-fidelity inference, and the low-fidelity

estimator provides a means to reduce the computational cost of multi-fidelity Monte Carlo. However,

these estimators are an example of a class of methods that explores a compute-variance tradeoff:

computationally cheaper estimates leads to high variability. The resulting increase in variance slows

down the convergence of the MCMC procedure and could lead to an overall less efficient method

due to a reduced effective sample size.

5.4 Summary of the multi-fidelity MCMC recipe

Here we summarize the recipe for constructing a multi-fidelity Markov chain Monte Carlo algorithm.

First, identify a sequence of increasing-fidelity target densities with the property that their

limit is the desired “perfect-fidelity” density. Low-fidelity densities should be cheap with the cost
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Algorithm 5.3.1 Multi-fidelity Monte Carlo with sign-correction
1: Input: Initial state θ and fidelity K, truncation distribution µ
2: for t = 1, . . . , T do
3: Given current K and θ, form estimator π̂K(θ) =

∑K
k=1 wk,K(πk(θ)− πk−1(θ))

4: Save sign σ(θ,K) = sign(π̂K(θ))
5: Update fidelity K leaving invariant the target conditional

π̃(K|θ) ∝ µ(K)|π̂K(θ)|

6: Update state θ leaving invariant the target conditional

π̃(θ|K = k) ∝ |π̂k(θ)|

7: end for
8: Output: Samples {(θ(t),K(t))} and estimate ÎT =

(∑T
t=1 σ

(t)h(θ(t))
)
/
(∑T

t=1 σ
(t)
)

rapidly increasing within the sequence. In the context of Bayesian inference, it may be appropriate

to focus the multi-fidelity aspects on the likelihood term and construct the target densities via,

e.g., πk(θ;D) ∝ π0(θ)Lk(θ ; D), where π0 is the prior, Lk is a low-fidelity likelihood, and D is the

set of observations. This likelihood-based version is what we use in several of the experiments.

Next, introduce a truncation distribution µ on N. This truncation distribution should be chosen

to balance between expected cost and variance of the resulting estimator; our overall goal is to

mostly use cheap low-fidelity densities, but high-variance estimators will presumably damage the

mixing time and/or the asymptotic variance.

Initialize the Markov chain with a reasonable choice for θ and a draw of K from the distribution µ.

Each step of the Markov chain simulation consists of an update to θ given K and an update of K

given θ. The update of θ given K can be performed using any standard MCMC algorithm, e.g., M-H,

slice sampling, or HMC, applied to the low-fidelity estimator. It is important to use the absolute

value of the estimator and keep track of its sign. The update of K given θ is also flexible, but it is

reasonable to construct the update so that only a few K are considered in each step, as each of those

fidelities will need to be evaluated. By default, we consider a simple random walk on the positive

integers for our experiments. After running a sufficient number of steps of the Markov chain, use

the sign corrected-estimator in Equation (5.5) to compute the expectation of the function h(θ).
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(a) Two-stage MH (b) Multi-fidelity MH (c) MH sampler estimate vs cost

(d) Single-fidelity slice (e) Multi-fidelity slice (f) Slice sampler estimate vs cost

Figure 5.5.1: Demonstration of multi-fidelity MCMC on a conjugate Gaussian model. Left: His-
tograms for M-H (a,b) and slice sampling (d,e). Right: Comparison of posterior standard deviation
estimate vs computation for M-H (c) and slice sampling (d) methods.

5.5 Experiments

In all experiments, we use a random-walk M-H update to sample from the conditional K|θ, and trun-

cation distribution µ(K) = geometric(K; γ0). Additional experimental details are in Appendix D.3.

5.5.1 Toy conjugate Gaussian models

In order to understand the behavior of MF-MCMC on a simple example of Bayesian inference, we

first examine an example where the computational cost of evaluating the sequence of low-fidelity

likelihoods does not increase with k. Consider a perfect-fidelity likelihood L∞(θ) = N (x; θ, σ∞) and

a low-fidelity likelihood Lk(θ) = N (x; θ, σk), where σ2
k → σ2

∞. The prior is π0(θ) = N(θ|0, 1), and so
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a closed-form posterior density can be computed. Here we consider the sequence σ2
k = 1 + 2/k2 and

σ2
∞ = 1. In Figure 5.5.1 we compare the results of single-fidelity and multi-fidelity M-H and slice

sampling as well as the two-stage M-H algorithm summarized in Section 2.3.4. We consider 2 two-

stage M-H settings with high and low fidelities of {kHF, kLF} = {1000, 10} and {kHF, kLF} = {100, 5}.

The histograms show the bias of each method after simulating 10,000 samples, and the solid gray

curve denotes the exact posterior density. We also compute a measure of total cost and a running

average of the estimate of the posterior standard deviation functional, where the dotted black line

denotes the true value. The number of cost-adjusted likelihoods was computed by upweighting each

likelihood evaluation by the fidelity. Here the multi-fidelity methods typically converge to a similar

value as the single high-fidelity methods but in fewer cost-adjusted likelihood evaluations.

5.5.2 Log-Gaussian Cox processes

We examine an application of MF-MCMC to the log Gaussian Cox process (LGCP) model (Møller

et al., 1998), where the perfect-fidelity model is a function of an integral and the lower-fidelity

sequence of models arises from k-point quadrature estimates. Let log f ∼ GP(0, κ`), where κ`(x, x′) =

exp
(
− 1

2`2 ‖x− x′‖22
)
and where ` is a lengthscale hyperparameter. Consider an inhomogenous

Poisson process on X ⊆ RD with intensity λ(x) = ef(x). Given a random set of points {Xn}Nn=1, the

perfect-fidelity likelihood is

L∞(f) = exp

(∫

X
(1− ef(x))dx

) N∏

n=1

ef(Xn). (5.10)

Typically, inference in the LGCP uses a grid-based approximation of Equation (5.10), where the

points are binned into counts and modeled with a Poisson likelihood (Diggle et al., 2013; Murray

et al., 2010; Teng et al., 2017), resulting in a biased posterior. Because the likelihood depends

on a high-dimensional latent Gaussian vector, we perform inference for f using the elliptical slice

sampling (ESS) algorithm (see Section 2.3.3). We approximate the integral in Equation (5.10) with

a trapezoidal quadrature rule Ik, where the number of quadrature points is a linear function of k.

We apply multi-fidelity and single-fidelity ESS algorithms to a coal mining disasters data set
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Figure 5.5.2: Coal mining disasters 1850–1963. Left: Posterior mean of the rate function at the
observed data points. Right: Posterior mean of the rate function at T = 1862 vs computation.

(Carlin et al. (1992)). The data contain the dates of 191 coal mine explosions that killed ten or

more men in Britain between March 15, 1851 and March 22, 1962. Figure 5.5.2 (left) shows the

estimated mean intensity and standard deviation on coal mining disasters data between one run of

multi-fidelity ESS and single-fidelity ESS with k = 10, 100, 1000 quadrature points. In this plot, the

high- (k = 1000) and multi-fidelity posterior mean and standard deviation estimates match well, and

the bias in the lowest fidelity (k = 10) estimate is apparent. We also computed the cost-adjusted

number of likelihood evaluations performed in each iteration of MF-ESS and SF-ESS. Figure 5.5.2

(right) shows the average estimated mean intensity at the time step t = 1862 on the three models

against the average cost-adjusted number of likelihood evaluations per iteration. We observe that

the multi-fidelity and high-fidelity estimates are close after many iterations of sampling, but that

the multi-fidelity estimate converges with less computation.

5.5.3 Bayesian ODE system identification

We now apply the MF-MCMC approach to Bayesian system identification for the Lotka-Volterra

ODE. Let u(t) ≥ 0 represent the population size of the prey species at time t, and v(t) ≥ 0 represent

the population size of the predator species. The dynamics of the two species given parameters

α, β, γ, δ ≥ 0 are given by a pair of first-order ODEs:

d

dt
u = (α− βv)u = αu− βuv, d

dt
v = (−γ − δu)v = −γv − δuv. (5.11)
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(a) Sampled posterior trajectories under a fixed computational budget

(b) Posterior mean estimate vs computational cost

Figure 5.5.3: Lotka-Volterra system parameter identification. The fidelity represents (a function of)
the step size dt of the ODE solver.

System identification solves the inverse problem by estimating the parameters of the ODE system

θ = (α, β, γ, δ). Taking a Bayesian approach, we specify a noise model for the observed data and

priors on the parameters, and we use MCMC to infer a distribution over the solution. For simplicity,

we assume that the initial conditions are known and fix σ = 0.25.

Define zn := (u(tn), v(tn)) and let z1(θ), . . . , zN (θ) be the solutions to the Lotka-Volterra

differential equations at times t1, . . . , tN given the initial conditions and the system parame-

ters θ = (α, β, γ, δ). Suppose we have observations arising from log(yn) = log(zn) + εn, where

ε ∼ N(0, σ2I). The low-fidelity likelihood is a function of a numerical solution of the ODE using a
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Figure 5.5.4: PDE-constrained optimization with a linear heat equation. Estimate for α (left) and β
(right) vs computation. The black dotted lines denote the true values of α, β.

time step of size dt (Equation (D.3)). We compared the performance of a multi-fidelity elliptical

slice sampler to single-fidelity ellipitical slice samplers with step size dt = 1 × 10−5, 1 × 10−4.

For the ODE solver, we considered both an Euler solver and an 4th-order Runge-Kutta solver

(Figure D.3.1). Figure 5.5.3a shows 200 trajectories corresponding to parameters sampled from the

posterior distributions under each method using the Euler solver. Figure 5.5.3b shows posterior

mean estimates for each system parameter. We observe that the estimates from the multi-fidelity

slice sampler approach the estimates reported by Howard (2009) (black dotted lines) in less time

than the single-fidelity samplers.

5.5.4 PDE-constrained optimization

We now consider global optimization of a PDE-constrained objective, where an expensive physical

simulation is run repeatedly in an outer loop problem. A common approach for global optimization

is simulated annealing, which has been applied to constrained global optimization (Romeijn and

Smith, 1994). Consider a model for heat flow in a thin rod of length L with spatial coordinates

x ∈ [0, L]. Let u(x, t) represent the temperature in the rod at position x and time t, and let ū

represent a desired target temperature. The goal is to minimize a loss function subject to u satisfying

a linear heat equation. This objective along with an initial condition and homogenous boundary
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conditions can be summarized as:

minimizeu ‖u− ū‖22

subject to
∂u

∂t
= α · ∂

2u

∂x2
+ 2β · u, (5.12)

u(x, 0) = sin
(
πx/2

)
,

u(0, t) = u(L, t) = 0, x ∈ [0, L], t ∈ [0, T ],

where α, β > 0 are the system parameters. The goal is to find θ = (α, β) that minimizes the objective

and satisfies the constraints. To solve the PDE, we discretize the domain into a grid of size ∆x and

represent the second derivative using the central difference formula. This induces a system of ODEs

that we solve numerically using a Tsitouras 5/4 Runge-Kutta method, setting ∆t = 0.4∆x2 so as to

satisfy a CFL stability condition. Here the fidelity of the problem is given by the size of the spatial

discretization ∆x, which in turn controls ∆t. We compared against two single-fidelity discretizations

of the spatial coordinate, where ∆x = 5× 10−3, 1× 10−2. The results are in Figure 5.5.4, where

we plot two of the MF results with γ0 = 0.1, 0.25. In these examples, the multi-fidelity estimates

converge faster than the single-fidelity estimates in wallclock time.

5.5.5 Gaussian process regression parameter inference

Let X ∈ RN×D and consider a Gaussian process regression model with a squared exponential kernel:

f ∼ GP(0, kθ), y = f(X) + ε, ε ∼ N (0, σ2
0), kθ(x, x

′) = exp

(
− 1

2θ2
‖x− x′‖22

)
, (5.13)

where we assume σ2
0 is known. Let Σθ := [kθ(xi, xj)]i∈[N ],j∈[N ].

In many applications of Gaussian process modeling, one is interested in integrating out the

parameters θ using MCMC. Computing the posterior π(θ|X, y) is expensive because each evaluation

of the likelihood p(y|X, θ) = N (y | 0,Σθ+σ2
0I) involves computing a determinant and solving a linear

system with respect to the matrix Σθ + σ2
0I, which has an O(N3) computational cost associated

with standard methods (e.g., Cholesky decomposition). For simplicity, we will only consider the
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(a) Histograms of high, low, two-stage, and multi-fidelity (b) Posterior mean estimate vs computation

Figure 5.5.5: Parameter inference in a Gaussian process regression model. Left: The posterior
distribution of the parameter θ. Right: The posterior mean estimate vs computional cost.

fidelity of solution to the linear system, but we note that the determinant can considered using

the approach described in Potapczynski et al. (2021). Additional derivations and details are in

Appendix D.3.5.

We generate synthetic data from the GP model with N = 100, σ2
0 = 1, and lengthscale θ0 = 45.

For the GP model, we use a log Normal prior on θ given above in Equation (D.5) with parameters

ν0 = 3.8, ν1 = 0.03. In Figure 5.5.5, we compare these approaches using single-fidelity, multi-

fidelity, and two-stage M-H samplers. The low-fidelity likelihood sequence was constructed by

computing the solution to the linear system using a preconditioned conjugate gradient solver with

k steps. The single-fidelity likelihoods were a high-fidelity likelihood (k = N) and a low-fidelity

likelihood (k = kN � N), and the multi-fidelity M-H samplers used γ0 = 0.1. The two-stage M-H

approach used high and low fidelities of k ∈ {100, 5}. For all methods, we use a M-H sampler

with T = 50000 iterations. In the histograms, we observe that the high-fidelity, multi-fidelity

and two-stage approaches tend to lead to similar posteriors, while the low-fidelity sampler has

more noticable bias with respect to the high-fidelity histogram. The estimate produced by the

multi-fidelity samplers converged in fewer cost-adjusted likelihood evaluations than the high-fidelity

and two-stage approaches.
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5.6 Discussion

In this work, we introduced a class of multi-fidelity MCMC that uses a low-fidelity unbiased estimator

to reduce the computational cost of sampling while still maintaining the desired limiting target

distribution of the Markov chain. In particular, we have demonstrated the use of our framework on

more advanced MCMC algorithms beyond M-H, such as slice sampling, and to additional settings

such as optimization. Our results show a reduction in computation while producing accurate

solutions in comparison with high-fidelity models when it is possible to construct a target estimator

that is not too noisy. Many future directions remain. First, applying MF-MCMC to large-scale

expensive applications has many computational challenges. Making the method more robust to

specialized problems is important, especially if the estimator is heavy-tailed. Thus, constructing good

proposal distributions matching properties of the low-fidelity target sequence is crucial, especially for

application to high-dimensional problems. In addition, we have thus far focused on target densities

where there is a single computation whose fidelity is varied. However, in many settings, there may

be target densities with multiple computations that converge at different rates, for example, if the

target density includes both an intractable integral and a solution of a linear system. Our framework

can be extended to that setting by adjusting the proposal distribution, and it is useful to understand

how these rates impact the convergence properties of the sampler.
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Chapter 6

Conclusion and future directions

In this chapter, we briefly review the contributions of the dissertation, and we conclude by discussing

future avenues of research.

6.1 Summary of contributions

In this dissertation, we consider several case studies of popular probabilistic machine learning

methods under misspecification. In the first case study, we study a popular Bayesian clustering

model consisting of a finite mixture model with a prior on the number of components. First, we add

rigor to existing data-analysis folk wisdom by proving that no matter the amount of misspecification,

the posterior number of components diverges, i.e., the posterior probability of any particular finite

number of components converges to 0 in the limit of infinite data. In particular, this result uses novel

sufficient conditions that are more easily verifiable than those typical in the asymptotics literature.

Next, we study misspecification of scaling behavior in Bayesian network models. Many real-world

graphs are sparse in the scaling of the number of edges relative to the number of vertices, but a

class of popular probabilistic models for graphs based on exchangeability is misspecified for sparse

graphs. We develop a framework that considers an alternative notation of exchangeability, called

edge exchangeability, and show that a large class of generative models under this framework can
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generate sparse graphs. Empirically, we also observe sparse power law scaling behaviors.

Finally, we consider Bayesian models with expensive or intractable likelihoods or target densities,

a scenario that arises commonly in scientific computing applications. This is particularly problematic

when using MCMC to infer the posterior, as each iteration typically requires an evaluation of the

(unnormalized) target density. In these scenarios, it is common to approximate the target density,

adding a source of bias to the posterior. We show that in problems in which we have access to a

sequence of low-fidelity target densities that converge to the “infinite”-fidelity target, we can construct

a Markov chain with the infinite-fidelity target while only ever having to evaluate elements in the

lower-fidelity sequence of target densities. Our approach allows us to construct general-purpose

MCMC algorithms, and we apply this framework to a number of complex algorithms, including slice

sampling and elliptical slice sampling.

6.2 Future directions

Robustness to misspecification in latent variable models. In this dissertation, we only

began to explore the behavior of finite mixture models under component misspecification, and many

future directions remain. We expect that under many related models, estimates for the number

of components will have similar conclusions to those studied in this dissertation, including for

non-Bayesian mixture modeling methods. One future direction is to analyze the behavior of the

estimate of the number of components selected by information criterion methods, such as AIC and

BIC. In addition, because our analysis is inherently asymptotic, it is possible that the posterior on

the number of components may still provide useful inferences for a finite sample. Finally, we analyzed

the behavior of the power posterior under a fixed finite power. We point to similar power-posterior

behavior even when the power changes in N but converges to a constant in (0, 1). However, Miller

and Dunson (2019) consider powers that converge to 0 in the limit of N → ∞. It remains to

investigate this case, especially for more general sequences of powers converging to zero, beyond the

particular sequence suggested by Miller and Dunson (2019).
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Accelerating scientific applications with multi-fidelity MCMC. In Chapter 5, we outlined

a recipe for constructing multi-fidelity MCMC algorithms and demonstrated the approach on a few

proof-of-concept examples. More specialized study of this approach in particular problem subclasses

and for specific scientific applications remains. In particular, we expect many applications in the

physical sciences, including applications in the quantum sciences, material science, structural design,

and astrophysics. One extension of the current method is to apply the method to models with

multiple types of computations that need to be approximated. Incorporating randomized fidelities

for each computation into the Markov chain is then a straightforward extension, but choosing an

appropriate truncation distribution will require more care.

Concluding remarks. While there have been many exciting advances in probabilistic machine

learning in recent years, there remains much work to be done in order to understand how these

methods behave when various assumptions are violated, which is often the case in real-world

applications. Insufficient understanding of these behaviors could lead to misleading or fundamentally

inaccurate inferences that may be then propagated into downstream tasks, such as high-stakes

decisions. Thus, it increasingly important to develop reliable data analysis tools that account for

misspecification.
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Appendix A

Supplementary material: foundations

of probabilistic modeling

A.1 The general version of Schwartz’s theorem

We now provide a proof of Theorem 2.1.9. First, rewrite the posterior distribution of the complement

of the neighborhood U as:

Π(U c |X1, . . . , Xn) =

∫
Uc

∏n
i=1 p(Xi) dΠ(p)∫

P
∏n
i=1 p(Xi) dΠ(p)

=

∫
Uc

∏n
i=1

p(Xi)
p0(Xi)

dΠ(p)
∫
P
∏n
i=1

p(Xi)
p0(Xi)

dΠ(p)
. (A.1)

Since the test functions φn ∈ [0, 1], we can upper bound the posterior from above as

Π(U c |X1, . . . , Xn) ≤ Π(U c |X1, . . . , Xn) + φn(1−Π(U c |X1, . . . , Xn)) (A.2)

= φn +
(1− φn)

∫
Uc

∏n
i=1

p(Xi)
p0(Xi)

dΠ(p)
∫
P
∏n
i=1

p(Xi)
p0(Xi)

dΠ(p)
. (A.3)

By Markov’s inequality, the assumption f (n)
0 (φn) ≤ e−Cn implies that

∑
n≥1 f

(n)
0 (φn > e−Cn) <
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∞. And so the Borel–Cantelli lemma then implies that

f
(∞)
0 (φn > e−Cn occurs for infinitely many n) = 0.

Hence, the first term in the sum above φn → 0 almost surely under f (∞)
0 as n→∞.

It remains to show that the second term has the appropriate behavior. The goal is to control

the behavior of the numerator and the denominator of the second term of the sum such that (with

f
(∞)
0 -probability 1) this ratio converges to 0.

Step 1: Define Kε(p0) := {p ∈ P : KL(p0; p) < ε}. The KL-support condition on the prior Π –

i.e., for all ε > 0, Π(Kε(p0)) > 0 – is used to show that for any β > 0,

lim inf
n→∞

enβ
∫

p

n∏

i=1

p(Xi)

p0(Xi)
dΠ(p) =∞ f

(∞)
0 -a.s. (A.4)

First we rewrite the expression as an exponential of the log of the product, which allows us to

transform this into a sum of logarithms:

enβ
∫

p

exp


log




n∏

i=1

p(Xi)

p0(Xi)





 dΠ(p) = enβ

∫

p

exp


−

n∑

i=1

log

(
p0(Xi)

p(Xi)

)
 dΠ(p) (A.5)

≥ enβ
∫

Kε(p0)

exp


−

n∑

i=1

log

(
p0(Xi)

p(Xi)

)
 dΠ(p). (A.6)

The second line holds because we are restricting the integral to a smaller set Kε(p0).
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Fatou’s lemma gives us an inequality between the liminf outside and the liminf inside the integral:

lim inf
n→∞

enβ
∫

p

exp


log




n∏

i=1

p(Xi)

p0(Xi)





 dΠ(p) (A.7)

≥ lim inf
n→∞

enβ
∫

Kε(p0)

exp


−

n∑

i=1

log

(
p0(Xi)

p(Xi)

)
 dΠ(p), (A.8)

≥
∫

Kε(p0)

lim inf
n→∞

exp


nβ −

n∑

i=1

log

(
p0(Xi)

p(Xi)

)
 dΠ(p), (A.9)

Now consider the integrand in the line above and its limiting behavior (thus evaluating its liminf).

The strong law of large numbers implies that with f (∞)
0 -probability 1, for all p ∈ Kε(p0),

− 1

n

n∑

i=1

log

(
p0(Xi)

p(Xi)

)
n→∞−→ −f0 log

(
p0

p

)
= −

∫
log

(
p0(x)

p(x)

)
p0(x)dµ(x) = −K(p0, p) ≥ −ε.

where the inequality holds since p ∈ Kε(p0),

This then implies that with f (∞)
0 -probability 1,

exp


n


β − 1

n

n∑

i=1

log

(
p0(Xi)

p(Xi)

)



 n→∞−→ ∞. (A.10)

Plugging this into the liminf above and using the KL support condition, i.e., Π(Kε(p0)) > 0 and

applying Fubini’s theorem, we have

lim inf
n→∞

enβ
∫

p

n∏

i=1

p(Xi)

p0(Xi)
dΠ(p) (A.11)

≥
∫

Kε(p0)

lim inf
n→∞

exp


n


β − 1

n

n∑

i=1

log

(
p0(Xi)

p(Xi)

)



 dΠ(p) =∞ f

(∞)
0 -a.s., (A.12)

and so the conclusion holds.
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Step 2: The existence of a uniformly sequence of tests is used to show that

lim
n→∞

enβ0(1− φn)

∫

Uc

n∏

i=1

p(Xi)

p0(Xi)
dΠ(p) = 0 f

(∞)
0 -a.s. (A.13)

By Fubini’s theorem, we can exchange the expectation and integral

f
(n)
0


(1− φn)

∫

Uc

n∏

i=1

p(Xi)

p0(Xi)
dΠ(p)


 =

∫
(1− φn)

∫

Uc

n∏

i=1

p(Xi)

p0(Xi)
dΠ(p) df

(n)
0 (A.14)

=

∫

Uc

∫
(1− φn)

n∏

i=1

p(Xi)

p0(Xi)
df

(n)
0 dΠ(p) (A.15)

=

∫

Uc

∫
(1− φn)

n∏

i=1

p(Xi)dµ dΠ(p) (A.16)

=

∫

Uc

∫
(1− φn) df (n) dΠ(p) (A.17)

=

∫

Uc
f (n)(1− φn) dΠ(p) (A.18)

. e−Cn, (A.19)

where the last line follows from our assumption that for some C > 0,

sup
p∈Uc

f (n)(1− φn) < e−Cn.

And so for some β0 > 0, C > 0,

f
(n)
0


enβ0(1− φn)

∫

Uc

n∏

i=1

p(Xi)

p0(Xi)
dΠ(p)


 < e−n(C−β0). (A.20)

Since Markov’s inequality implies that
∑
n≥1 e

−n(C−β0) <∞ for C > β0, by the Borel–Cantelli

lemma, the numerator goes to 0 almost surely. Finally, choosing β = β0, the ratio goes to 0 a.s.
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Appendix B

Supplementary material: finite

mixture models

B.1 Finite mixture models with an upper bound on the num-

ber of components

In this section we consider a modification of the setting from the main chapter in which the prior

Π has support on only those finite mixtures with at most k̃ components. We start by stating and

proving our main result in this finite-support case. Then we discuss why our conditions have changed

slightly from Definition 3.2.1. Finally we demonstrate our finite-support theory in practice with an

experiment.

B.1.1 Result and proof

Let F(k) be the set of finite mixtures with exactly k components for k ≤ k̃. We can apply the

same proof technique in Section 3.4 to the present case, provided that the mixture-density posterior

concentrates on weak neighborhoods of some compact subset of k̃-mixtures.
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Theorem B.1.1. Suppose that the prior Π has support on only those mixtures with at most k̃

components. Assume that:

1. The posterior concentrates on weak neighborhoods of a weak-compact subset of F(k̃), and

2. Ψ is continuous, is mixture-identifiable, and has degenerate limits.

Then the posterior on the number of components concentrates on k̃:

Π(k̃ |X1:N )
N→∞−→ 1 f0-a.s. (B.1)

Proof Sketch. By assumption, the posterior concentrates on weak neighborhoods of some weak-

compact subset A ⊆ F(k̃). It remains to show that there exists a weak neighborhood U of A that,

for all k < k̃, contains no k-mixtures of the family of Ψ. Suppose the contrary, i.e., that every

such neighborhood contains a mixture of strictly less than k̃ components; then we can construct

a sequence (fi)
∞
i=1 of mixtures of strictly less than k̃ components such that fi ⇒ A (in the sense

that the infimum of the weak metric between fi and elements of A converges to 0). Let gi be the

corresponding sequence of mixing measures such that fi = F (gi). Now we follow step 2 of the proof

of the main theorem, with some slight modifications to account for the fact that fi converges weakly

to a set rather than a single density. Suppose that gi(Θ \K)→ 0 for some compact subset K ⊆ Θ.

Then following the proof of the main theorem, we have that FK and GK are compact, and so there is

a weak-convergent subsequence of F (ĝi,K) that converges to some f0; since A is weak-closed, f0 ∈ A.

The remainder of this branch of the proof then follows the proof main theorem directly. Now for the

other branch, suppose gi(Θ \K) 6→ 0 for any compact K ⊆ Θ. Then as in the main proof there is a

sequence of parameters that is not relatively compact; so the corresponding sequence of components

ψi is either not tight or not µ-wide. Since A is weak-compact, by Prokhorov’s theorem A is tight, so

fi must be tight, so ψi must be tight. On the other hand, ψi also must be µ-wide, since otherwise

replacing it with the singular sequence φi shows that fi would not converge weakly to A. This

concludes the second branch of the proof, and the result follows.
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B.1.2 Discussion of the weak concentration condition

Our main result in Definition 3.2.1 uses a KL support condition to guarantee weak concentration

of the posterior. In contrast, in Definition B.1.1, we do not impose any KL support condition and

instead just directly assume weak posterior concentration for the mixture density. First we discuss

why this assumption remains reasonable and then discuss why we chose to change the condition.

Reasonableness of the condition Note that the new weak-concentration assumption is actually

weaker than the KL condition in the main chapter—albeit potentially substantially more difficult to

verify. As a simple example of why this assumption is reasonable, suppose we obtain data generated

from a Laplace distribution, and we use a mixture model with Gaussian components and a prior that

asserts that the mixture has at most 10 components. Then we expect the posterior to concentrate on

mixture densities that have exactly 10 components, and in particular, the set of KL-closest mixture

densities to the Laplace. Although many examples will have a single closest such density, we state

Definition B.1.1 in such a way that it allows for the case where the posterior concentrates on a

compact set of densities (usually due to symmetry in the model).

Why change the condition In the main text, we assume—via the KL support condition,

Definition 3.3.1—that the infimum of the KL divergence from the data generating distribution f0

to mixture distributions from the model is 0. In other words, we must be able to approximate f0

arbitrarily well using mixture distributions from the model. However, in the setting with a bounded

number of components, this assumption typically does not hold. In particular, the infimum KL from

the data-generating distribution f0 to mixture distributions in the model is nonzero. For example,

in the previous Laplace versus Gaussian mixture example, we require an unbounded number of

components to achieve a vanishing KL divergence. If we are limited to 10 components, the infimum

KL is nonzero.

Demonstrating weak consistency with a reasonable amount of generality when the KL support

condition does not hold is challenging; see for instance, Kleijn (2003, Lemma 2.8) and Ramamoorthi

et al. (2015, Remark 4). Thus, we opt to require that weak concentration be verified directly for each
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(a) Gaussian mixture data (b) Laplace mixture data

Figure B.1.1: Well-specified and misspecified component families that use a prior with an upper
bound on the number of components given by k ∼ Unif{1, . . . , 6}. Posterior values for component
counts k with k > 6 are all zero, so we do not plot them.

particular applied setting of interest, rather than attempting to develop a general set of sufficient

conditions. The fact that we directly require weak convergence also means that we do not need to

make any stipulations about how data are generated. Therefore, in contrast to the main theorem,

we do not impose any such assumptions.

B.1.3 Experiments

Now we demonstrate that the asymptotic behavior described by our theory occurs in practice. In

order to the study both the well-specified and misspecified cases, we consider the same 2-component

Gaussian and Laplace data described in Section 3.8.1. Here, we set the prior on the number of

components to be a uniform distribution on {1, . . . , 6}. The resulting posterior number of components

appears in Figure B.1.1. Here the well-specified model (Gaussian data) is consistent and concentrates

on the true generating number of components as N grows (Rousseau and Mengersen, 2011). On

the other hand, in the misspecified model (Laplace data), the posterior concentrates on the largest

possible number of components under the prior, in this case given by k̃ = 6.
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B.2 Proof of Proposition 2.2

Consider the multivariate Gaussian family Ψ =
{
N (ν,Σ) : ν ∈ Rd, Σ ∈ Sd++

}
with parameter space

Θ = Rd × Sd++, equipped with the topology induced by the Euclidean metric. Let (λj(Σ))dj=1

denote the eigenvalues of the covariance matrix Σ ∈ Sd++ that satisfy ∞ > λ1(Σ) ≥ . . . ≥ λd(Σ) > 0.

Since the family of Gaussians is continuous and mixture-identifiable (Yakowitz and Spragins, 1968,

Proposition 2), the main condition we need to verify is that the family has degenerate limits

(Definition 3.3.5). A useful fact is that if a sequence of Gaussian distributions is tight, then the

sequence of means and the eigenvalues of the covariance matrix is bounded.

Lemma B.2.1. Let (ψi)i∈N be a sequence of Gaussian distributions with mean νi ∈ Rd and

covariance Σi ∈ Sd++. If (ψi)i∈N is a tight sequence of measures, then the sequences (νi)i∈N and

(λ1(Σi))i∈N are bounded.

Proof. Let Yi denote a random variable with distribution ψi. For each covariance matrix Σi,

consider its eigenvalue decomposition Σi = UiΛiU
>
i , where Ui ∈ Rd×d is an orthonormal matrix and

Λi ∈ Rd×d is a diagonal matrix. Then the random variable Zi = U>i Yi has distribution N (U>i νi,Λi).

If either ‖νi‖2 = ‖U>i νi‖2 is unbounded or ‖Λi‖F is unbounded, then Zi is not tight (Billingsley,

1986, Example 25.10). Since Zi and Yi lie in any ball centered at the origin with the same probability,

Yi is not tight.

We now show that the multivariate Gaussian family has degenerate limits.

Proof of Proposition 3.2.2. If the parameters (θi)i∈N are not a relatively compact subset of Θ, then

either some coordinate of the sequence of means νi diverges, λ1(Σi)→∞, or λd(Σi)→ 0. If some

coordinate of the mean νi diverges or the maximum eigenvalue diverges, i.e., λ1(Σi) → ∞, then

the sequence (ψθi) is not tight by Definition B.2.1. On the other hand, if λd(Σi) → 0 as i → ∞,

then ψθi converges weakly to a sequence of degenerate Gaussian measures that concentrate on

Ci =
{
x ∈ Rd : (x− νi)>ud,i = 0

}
, where ud,i is the dth eigenvector of Σi. Note that µ(Ci) = 0 for

Lebesgue measure µ; so if we define C = ∪iCi in the setting of Definition 3.3.4, the sequence is not

µ-wide.
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We can generalize Definition 3.2.2 beyond multivariate Gaussians to mixture-identifiable location-

scale families, as shown in Definition B.2.2. Examples of such families include the multivariate

Gaussian family, the Cauchy family, the logistic family, the von Mises family, and generalized extreme

value families. The proof is similar to that of Definition 3.2.2.

Proposition B.2.2. Suppose Ψ is a location-scale family that is mixture-identifiable and absolutely

continuous with respect to Lebesgue measure µ, i.e.,

dΨ

dµ
=

{
|Σ|−1/2 ϕ

(
Σ−

1/2(x− ν)
)

: ν ∈ Rd,Σ ∈ Sd++

}
,

where ϕ : Rd → R is a probability density function. Then Ψ satisfies Definition 3.3.6.

B.3 Additional related work

Priors for microclustering behavior have been a recent focus in the Bayesian nonparametrics literature

(Klami and Jitta, 2016; Zanella et al., 2016). Since having a fixed number of components across

dataset sizes N would be incompatible with sublinear growth (in N) of cluster size across all clusters,

we expect divergence issues similar in flavor to those in Miller and Harrison (2013, 2014).
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Appendix C

Supplementary material:

edge-exchangeable graphs and

sparsity

C.1 Overview

In Appendix C.2, we provide more examples of graph models that are either vertex exchangeable or

Kallenberg exchangeable. In Appendix C.3, we establish characterizations of edge exchangeability in

graphs via existing notions of exchangeability for combinatorial structures such as random partitions

and feature allocations. In Appendix C.4, we provide full proof details for the theoretical results in

the main text.

C.2 More exchangeable graph models

Many popular graph models are vertex exchangeable. These models include the classic Erdős–Rényi

model (Erdős and Rényi, 1959), as well as Bayesian generative models for network data, such as
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the stochastic block model (Holland et al., 1983), the mixed membership stochastic block model

(Airoldi et al., 2008), the infinite relational model (Kemp et al., 2006; Xu et al., 2007), the latent

space model (Hoff et al., 2002), the latent feature relational model (Miller et al., 2009), the infinite

latent attribute model (Palla et al., 2012), and the random function model (Lloyd et al., 2012). See

Orbanz and Roy (2015) and Lloyd et al. (2012) for more examples and discussion.

Recently, a number of extensions to the Kallenberg-exchangeable model of Caron and Fox (2017),

which builds on early work on bipartite graphs by Caron (2012), have also been developed. These

models include extensions to stochastic block models (Herlau et al., 2016), mixed membership

stochastic block models (Todeschini et al., 2016), and dynamic network models (Palla et al., 2016).

C.3 Characterizations of edge-exchangeable graph sequences

We introduced edge exchangeability, a new notion of exchangeability for graphs. Just as the Aldous-

Hoover theorem provides a characterization of the distribution of vertex-exchangeable graphs, it

is desirable to provide a characterization of edge exchangeability in graphs. Below we show how

characterization theorems that already exist for other combinatorial structures can be readily applied

to provide characterizations for edge exchangeability in graphs.

We first develop mappings from edge-exchangeable graph sequences to familiar combinatorial

structures—such as partitions (Pitman, 1995), feature allocations (Broderick et al., 2013b), and

trait allocations (Broderick et al., 2015; Campbell et al., 2018)—showing that edge exchangeability

in the graph corresponds to exchangeability in those structures. In this manner, we provide

characterizations of the case where one edge is added to the graph per step in Appendix C.3.1, where

multiple unique edges may be added per step in Appendix C.3.1, and where multiple (non)unique

edges may be added in Appendix C.3.1.

A limitation of these connections is that it is not immediately clear how to recover the connectivity

in the graph from the mapped combinatorial object; for instance, given a particular feature allocation,

the graph to which it corresponds is not identifiable. This issue has been addressed in a purely

combinatorial context via vertex allocations and the graph paintbox (Campbell et al., 2018) using
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the general theory of trait allocations. In Appendix C.3.2, we provide an alternative connection

to ordered combinatorial structures (Broderick et al., 2013b; Campbell et al., 2018) under the

assumption that vertex labels are provided. This assumption is often reasonable in the setting of

network data where the vertices and edges are observed directly. By contrast, it is unusual to assume

that labels are provided for blocks in the case of partitions, feature allocations, and trait allocations

since, in these cases, the combinatorial structure is typically entirely latent in real data analysis

problems. For instance, in clustering applications, finding parameters that describe each cluster is

usually part of the inference problem. In the graph case, though, the use of an ordered structure

identifies the particular pair of vertices corresponding to each edge in the graph, allowing recovery

of the graph itself.

C.3.1 The step collection sequence and connections to other forms of

combinatorial exchangeability

In order to analyze edge-exchangeable graphs using the existing combinatorial machinery of random

partitions, feature allocations, and trait allocations, we introduce a new combinatorial structure, the

step collection sequence, which can take the form of a sequence of partitions, feature allocations,

or trait allocations. As we will now see, the step collection sequence can be constructed from the

step-augmented graph sequence in the following way.

Suppose we assign a unique label φ to each pair of vertices. Then if a pair of vertices is labeled

φ, we may imagine that any particular edge between this pair of vertices is assigned label φ when it

appears. Let φj be the jth such unique edge label.

Recall that we consider a sequence of graphs defined by its step-augmented edge sequence E′n.

Let Sj be the set of steps up to the current step n in which any edge labeled φj was added. If

m edges labeled φj were added in a single step s, s appears in Sj with multiplicity m. So each

element s ∈ Sj is an element of [n]. Let Kn be the number of unique vertex pairs seen among edges

introduced up until the current step n. Then we may define Cn to be the collection of step sets
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across edges that have appeared by step n:

Cn = {S1, . . . , SKn}.

Finally, we can define the step collection sequence C = (C1, C2, . . .) as the sequence of Cn for

n = 1, 2, . . .. Note that it is not clear how to recover the original edge connectivity of the graph

from the step collection sequence, or whether it is possible to modify the sequence (or the labels

φj) such that it is easy to recover connectivity while maintaining the (non-trivial) connections to

combinatorial exchangeability provided in Appendix C.3.1 below.

Example C.3.1. Suppose we have the edge sequence

E1 = {{2, 3}, {3, 6}},

E2 = {{2, 3}, {3, 6}},

E3 = {{2, 3}, {3, 6}, {6, 6}, {3, 6}},

E4 = {{2, 3}, {1, 4}, {3, 6}, {6, 6}, {3, 6}},

with step-augmentation

E′4 = {({2, 3}, 1), ({1, 4}, 4), ({3, 6}, 1), ({6, 6}, 3), ({3, 6}, 3)}

for E4. Now we label the unique edges in E′n. Using an order of appearance scheme Broderick et al.

(2013b) to index the labels, E′4 becomes

{(φ1, 1), (φ2, 1), (φ3, 3), (φ1, 3), (φ4, 4)},

where the labels φj correspond to the four unique vertex pairs: φ1 = {3, 6}, φ2 = {2, 3}, φ3 =
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{6, 6}, φ3 = {1, 4}. The step collection sequence for C1, . . . , C4 is

C1 = {{1}︸︷︷︸
φ1

}, C2 = {{1}︸︷︷︸
φ1

}, C3 = {{1, 3}︸ ︷︷ ︸
φ1

, {3}︸︷︷︸
φ3

}, C4 = {{1, 3}︸ ︷︷ ︸
φ1

, {3}︸︷︷︸
φ3

, {4}︸︷︷︸
φ4

}.

Here each element of Cn is a set corresponding to one of the four unique labels φj and contains all

step indices up to step n in which an edge with that label was added to the graph sequence.

To see that the step collection sequence can be interpreted as a familiar combinatorial object,

we recall the following definitions. A partition Cn of [n] is a set {S1, . . . , SKn} whose blocks, or

clusters, are mutually exclusive, i.e., Si ∩ Sj = ∅, i 6= j, and exhaustive, i.e.,
⋃
j Sj = [n]. Feature

allocations relax the definition of partitions by no longer requiring the blocks to be mutually exclusive

and exhaustive. A feature allocation Cn of [n] is a multiset {S1, . . . , SKn} of subsets of [n], such

that any datapoint in [n] occurs in finitely many features Sj (Broderick et al., 2013b). A trait

allocation generalizes the feature allocation where now each Sj , called a trait, may itself be a multiset

(Broderick et al., 2015; Campbell et al., 2018).

We see that the step collection Cn can be interpreted as follows. If a single edge is added to the

graph at each round, Cn is a partition of [n], and the step collection sequence is a projective partition

sequence. If at most one edge is added between any pair of vertices at each step, Cn is a feature

allocation of [n], and the step collection sequence is a projective sequence of feature allocations.

In the most general case, when multiple edges may be added between any pair of vertices at each

step, Cn is a trait allocation of [n], and the step collection sequence is a projective sequence of trait

allocations.

In the following examples, corresponding to Figure C.3.1, we show different step collection

sequences that correspond to a partition, a feature allocation, and a trait allocation.

Example C.3.2 (Partition). Consider the step collection C5 = {{1, 3}, {2}, {4}, {5}}. The edges

form a partition of the steps. Here exactly one edge arrives in each step.

Example C.3.3 (Feature allocation). Consider the step collection C5 = {{1, 3}, {1}, {1, 5}, {3, 4}}.

This step collection forms a feature allocation of the steps. Thus in this case, there may be multiple
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(a) Partition (b) Feature allocation (c) Trait allocation

Figure C.3.1: Connection of edge-exchangeable graphs with partitions, feature allocations, and trait
allocations. Light blocks represent 0, dark blocks either represent 1 or the specified count. In a
partition, exactly one edge arrives in each step. In a feature allocation, multiple edges may arrive at
each step, but at most one edge arrives between any two vertices at each step. In a trait allocation,
there may be multiple edges of any type.

unique edges arriving in each step.

Example C.3.4 (Trait allocation). In a trait allocation, there may be multiple edges (not necessarily

unique) at each step. Consider the step collection C5 = {{1, 3, 3, 3}, {1}, {1, 5}, {3}, {4, 4}}. This

collection forms a trait allocation of the steps, where elements of C5 are now multisets.

In this section, we have connected certain types of edge-exchangeable graphs to partitions and

feature allocations. In the next two sections, we make use of known characterizations of these

combinatorial objects to characterize edge exchangeability in graphs.

Partition connection

First consider the connection to partitions. In this case, suppose that each index in [n] appears

exactly once across all of the subsets of Cn. This assumption on Cn is equivalent to assuming that

in the original graph sequence E1, E2, . . ., we have that En+1 always has exactly one more edge

than En. In this case, Cn is exactly a partition of [n]; that is, Cn is a set of mutually exclusive and

exhaustive subsets of [n]. If the edge sequence (En) is random, then (Cn) is random as well.

We say that a partition sequence C1, C2, . . ., where Cn is a (random) partition of [n] and Cm ⊆ Cn
for all m ≤ n, is infinitely exchangeable if, for all n, permuting the indices in [n] does not change the
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distribution of the (random) partitions (Pitman, 1995). Permuting the indices [n] in the partition

sequence (Cm) corresponds to permuting the order in which edges are added in our graph sequence

(Em). As an example of a model that generates a step collection sequence corresponding to a

partition sequence, consider the frequency model we introduced in Section 4.3 where the weights are

normalized. At each step, we choose a single edge according the resulting probability distribution

over pairs of vertices.

Given this connection to exchangeable partitions, the Kingman paintbox theorem (Kingman,

1978) provides a characterization of edge exchangeability in graph sequences that introduce one

edge per step: in particular, it guarantees that a graph sequence that adds exactly one edge

per step is edge exchangeable if and only if the associated step collection sequence (Cn) has a

Kingman paintbox representation. An alternate characterization of edge exchangeability in graph

sequences that introduce one edge per step is provided by exchangeable partition probability functions

(EPPFs) (Pitman, 1995). In particular, a graph sequence that introduces one edge per step is

edge-exchangeable if and only if the marginal distribution of Cn (the step collection at step n) is

given by an EPPF for all n.

Feature allocation connection

Next we notice that it need not be the case that exactly one edge is added at each step of the graph

sequence, e.g. between En and En+1. If we allow multiple unique edges at any step, then the step

collection Cn is just a set of subsets of [n], where each subset has at most one of each index in [n].

Suppose that any m belongs to only finitely many subsets in Cn for any n. That is, we suppose that

only finitely many edges are added to the graph at any step. Then Cn is an example of a feature

allocation (Broderick et al., 2013b). Again, if (En) is random, then (Cn) is random as well.

We say that a (random) feature allocation sequence (Cm) is infinitely exchangeable if, for any n,

permuting the indices of [n] does not change the distribution of the (random) feature allocations

Broderick et al. (2013a,b). Permuting the indices [n] in the sequence (Cm) corresponds to permuting

the steps when edges are added in the edge sequence (Em). Consider the following example of a

graph frequency model that produces a step collection sequence corresponding to an exchangeable
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feature allocation. For n = 1, 2, . . ., we draw whether the graph has an edge {i, j} at time step n as

Bernoulli with probability w{i,j} = wiwj . Thus, in each step, we draw at most one edge per unique

vertex pair. But we may draw multiple edges in the same step.

Similarly to the partition case in Appendix C.3.1, we can apply known results from feature

allocations to characterize edge exchangeability in graph models of this form. For instance, we know

that the feature paintbox Broderick et al. (2013b); Campbell et al. (2018) characterizes distributions

over exchangeable feature allocations (and therefore the step collection sequence for graphs of this

form) just as the Kingman paintbox characterizes distributions over exchangeable partitions (and

therefore the step collection sequence for edge-exchangeable graphs with exactly one new edge per

step).

We may also consider feature paintbox distributions with extra structure. For instance, the step

collection sequence is said to have an exchangeable feature probability function (EFPF) (Broderick

et al., 2013b) if the probability of each step collection Cn in the sequence can be expressed as a

function only of the total number of steps n and the subset sizes within Cn (i.e. the edge multiplicities

in the graph), and is symmetric in the subset sizes. As another example, the step collection sequence

is said to have a feature frequency model if there exists a (random) sequence of probabilities (wj)
∞
j=1

associated with edges j = 1, 2, . . . and a number λ > 0, conditioned on which the step collection

sequence arises from the graph built by adding edge j at each step independently1 with probability

wj for all values of j ∈ N, along with an additional Poiss(λ) number of edges that never share a

vertex with any other edge in the sequence. In other words, the graph is constructed with a graph

frequency model as in the main text of the present work (modulo the aforementioned additional

Poisson number of edges). Theorem 17 (“Equivalence of EFPFs and feature frequency models”) from

Broderick et al. (2013b) shows that these two examples are actually equivalent: if the step collection

sequence has an EFPF, it has a feature frequency model, and vice versa.
1This is conditional independence since the (wj) may be random.
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Further extensions

Finally, we may consider the case where at every step, any non-negative (finite) number of edges

may be added and those edges may have non-trivial (finite) multiplicity; that is, the multiplicity of

any edge at any step can be any non-negative integer. By contrast, in Appendix C.3.1, each unique

edge occurred at most once at each step. In this case, the step collection Cn is a set of subsets of

[n]. The subsets need not be unique or exclusive since we assume any number of edges may be

added at any step. And the subsets themselves are multisets since an edge may be added with some

multiplicity at step n. We say that Cn is a trait allocation, which we define as a generalization of a

feature allocation where the subsets of Cn are multisets. As above, if (En) is random, (Cn) is as

well.

We say that a (random) trait allocation sequence (Cm) is infinitely exchangeable if, for any

n, permuting the indices of [n] does not change the distribution of the (random) trait allocation.

Here, permuting the indices of [n] corresponds to permuting the steps when edges are added in the

edge sequence (Em). A graph frequency model that generates a step collection sequence as a trait

allocation sequence is the multiple-edge-per-step frequency model sampling procedure described in

Section 4.3. Here, at each step, multiple edges can appear each with multiplicity potentially greater

than 1, requiring the full generality of a trait allocation sequence.

Campbell et al. (2018) characterize exchangeable trait allocations via, e.g., probability functions

and paintboxes and thereby provide a characterization over the corresponding step collection

sequences of such edge-exchangeable graphs.

C.3.2 Connections to exchangeability in ordered combinatorial struc-

tures

As noted earlier, it is not immediately clear how to recover the connectivity in an edge-exchangeable

graph from the step collection sequence, nor how to do so in a way that preserves non-trivial

connections to other exchangeable combinatorial structures. Campbell et al. (2018) considers

an alternative to the step collection sequence in which the (multi)subsets in the combinatorial
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structure correspond to vertices rather than edges, known as a vertex allocation. This allows for

the characterization of edge-exchangeable graphs via the graph paintbox using the general theory of

trait allocations, while maintaining an explicit representation of the structure of the graph, i.e., the

connection between edges that share a vertex.

If we are willing to eschew the unordered nature of the step collection sequence, and assume

that we have an a priori labeling on the vertices, there is yet another alternative using the ordered

step collection sequence. The availability of labeled vertices is often a reasonable assumption in the

setting of network data, where the vertices and edges are typically observed directly. Suppose the

vertices are labeled using the natural numbers 1, 2, . . . . Then we can use the ordering of the vertex

labels to order the vertex pairs in a diagonal manner, i.e. {1, 1}, {1, 2}, {2, 2}, {1, 3}, {2, 3}, . . . .

Note that, for the purpose of building this diagonal ordering, we consider the lowest-valued index in

each vertex pair first. We build the step collection sequence (Cn) in the same manner as before,

except that each step collection Cn is no longer an unordered collection of subsets; the subsets derive

their order from the vertex pairs they represent. For example, if we observe edges at vertex pairs

{1, 1} and {1, 2} at step 1, and edges at vertex pairs {1, 1} and {2, 3} at step 2, then

C1 =
(
{1}, {1}, ∅, ∅, . . .

)

and

C2 =
(
{1, 2}, {1}, ∅, ∅, {2}, ∅, . . .

)
.

Since we know the order of the subsets in each Cn as they relate to the vertex pairs in the graph

and their connectivity, we can recover the graph sequence from the ordered step collection sequence

(Cn). Exchangeability in an ordered step collection sequence means that the distribution is invariant

to permutations of the indices within the subsets (although the ordering of the subsets themselves

cannot be changed). Given this notion of exchangeability, the earlier connections to exchangeable

partitions, feature allocations, and trait allocations remain true, modulo the fact that they must

themselves be ordered. Broderick et al. (2013b) provides a paintbox characterization of ordered

exchangeable feature allocations, thereby providing characterizations (via the earlier connections to
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partitions and feature allocations) of edge-exchangeable graphs that add either one or multiple unique

edges per step. Note that, in these cases, this is a full characterization of edge-exchangeable graphs,

by contrast to Appendix C.3.1, where we provided a characterization only of edge exchangeability

in graphs. We suspect that a similar characterization of edge-exchangeable graphs with multiple

(non)unique edges per step is available by examining characterizations of exchangeable ordered trait

allocations.

C.4 Proofs

The proof of the main theorem (Theorem 4.5.3) follows from a collection of lemmas below.

Lemma 4.5.2 characterizes the expected number of vertices and edges; Lemma C.4.2 establishes a

useful transformation of those expectations; and Lemma C.4.3 shows that the two sets of expectations

are asymptotically equivalent, so it is enough to consider the transformed expectation. Lemma C.4.5

provides the asymptotics of the transformed expectations. Finally, Lemma 4.5.1 shows that the

random sequences converge almost surely to their expectations, yielding the final result.

C.4.1 Preliminaries

Notation We first define the asymptotic notation used in the main chapter and appendix. We

use the notation “a.s.” to mean almost surely, or with probability 1. Let (Xn)n∈N, (Yn)n∈N be two

random sequences. We say that Xn
a.s.
= O(Yn) if lim supn→∞

Xn
Yn

<∞ a.s., and that Xn
a.s.
= Ω(Yn) if

Yn
a.s.
= O(Xn) a.s. We say that Xn

a.s.
= o(Yn) if limn→∞

Xn
Yn

= 0 a.s. Lastly, we say that Xn
a.s.
= Θ(Yn)

if Xn
a.s.
= O(Yn) and Yn

a.s.
= O(Xn).

Let Vn, En be the respective sets of active vertices and edges at step n in the multigraph, and

|Vn|, |En| be their respective cardinalities, as defined in the main text. We use the notation V̄n and

Ēn to represent these analogous vertex and edge sets for the binary graph. Note that V̄n is the same

as Vn.
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C.4.2 Graph moments

In this section, we give the expected number of vertices and expected number of edges for the multi-

and binary graph cases. We begin by defining the degree Di of vertex i in the multigraph and the

degree D̄i of vertex i in the binary graph, respectively, as

Di =
∑

j

M{i,j} D̄i =
∑

j

1

(
M{i,j} > 0

)
. (C.1)

Now we present the expected number of edges and vertices. We note that both the multi- and binary

graphs have the same number of (active) vertices, and so their expectations are the same.

Lemma C.4.1 (4.5.2, main text). The expected number of vertices and edges for the multi- and

binary graphs are

E
(
|V̄n|

)
= E

(
|Vn|

)
=

∫ [
1− exp

(
−
∫

1− (1− wv)n ν(dv)

)]
ν(dw),

E
(
|En|

)
=
n

2

∫∫
wv ν(dw) ν(dv),

E
(
|Ēn|

)
=

1

2

∫∫
(1− (1− wv)n) ν(dw) ν(dv).

Proof. Using the tower property of conditional expectation and Fubini’s theorem, we have that the

expected number of vertices is

E
(
|Vn|

)
= E


E


∑

i

1(Di > 0)

∣∣∣∣W





 = E


∑

i

P

(
Di > 0

∣∣∣∣W
)
 ,

followed by the definition of degree in Equation (C.1) and the binomial density,

E
(
|Vn|

)
= E



∑

i


1−

∏

j

P
(
M{i,j} = 0 |W

)




 = E



∑

w∈W


1−

∏

v∈W\{w}

(1− wv)n





 .
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Using the Slivnyak-Mecke theorem (Definition 2.2.9),

E
(
|Vn|

)
=

∫
E


1−

∏

v∈W
(1− wv)n


 ν(dw)

=

∫

1− E


exp


n

∑

v∈W
log(1− wv)








 ν(dw),

and finally by Campbell’s theorem (Definition 2.2.8) on the inner expectation,

E
(
|Vn|

)
=

∫ [
1− exp

(
−
∫

(1− (1− wv)n) ν(dv)

)]
ν(dw).

For the expected number of edges, we can again apply the tower property and Fubini’s theorem

followed by repeated applications of Slivnyak-Mecke to the expectations to get:

E(|En|) = E


E


1

2

∑

i 6=j

M{i,j}
∣∣W





 =

1

2

∫
E


∑

v∈W
nwv


 ν(dw) =

n

2

∫
wvν(dw)ν(dv).

The expected number of edges for the binary case is obtained similarly via Fubini and Slivnyak-Mecke:

E(|Ēn|) = E


1

2

∑

i 6=j

P (M{i,j} > 0|W)


 =

1

2
E


 ∑

w∈W,v∈W\{w}

(1− (1− wv)n)




=
1

2

∫ ∫
(1− (1− wv)n) ν(dw) ν(dv).

The asymptotic behavior of these quantities is difficult to derive directly due to the discreteness

of the indices n. Therefore, we rely on a technique called Poissonization, which allows us to

bypass this difficulty by instead considering a continuous analog of the quantities in order to

get asymptotic behaviors. Below, we introduce primed notation V ′t , E
′
t, Ē
′
t, D

′
t,i to represent the

Poissonized quantities for the vertices, multigraph edges, binary edges, and the degree of a vertex,
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where the index t now represents a continuous quantity. These will be defined such that V ′N has the

same asymptotic behavior as VN , E′N has the same asymptotic behavior as EN , and so on.

Given W, let Πij be the Poisson process generated with rate wiwj if i < j and rate 0 if i = j,

and let Πji = Πij . Let Πi :=
⋃∞
j=1 Πij , which is a Poisson process with rate ui :=

∑
j:j 6=i wiwj via

Poisson process superposition (Kingman, 1993, Sec. 2.2). If we think of t as continuous time passing,

the process Πij represents the times at which new edges are added between vertices i and j, and Πi

represents the times at which any new edges involving vertex i are added.

Thus, we define the Poissonized degree of vertex i in the multi- and binary graph cases, respectively,

to be a function of the continuous parameter t > 0,

D′t,i = |Πi ∩ [0, t]|, D̄′t,i =
∑

j

1
(
|Πij ∩ [0, t]| > 0

)
.

We can define the Poissonized graph quantities of interest using these two quantities:

|V̄ ′t | = |V ′t | =
∑

i

1(D′t,i > 0), |E′t| =
1

2

∞∑

i=1

D′t,i, |Ē′t| =
1

2

∑

i

D̄′t,i.

Lemma C.4.2. The expected number of Poissonized vertices and edges for the multi- and binary

graphs is

E
(
|V ′t |

)
=

∫ [
1− exp

(
−
∫

(1− e−twv) ν(dv)

)]
ν(dw)

E
(
|E′t|

)
=
t

2

∫∫
wv ν(dw) ν(dv)

E
(
|Ē′t|

)
=

1

2

∫∫
(1− exp(−twv)) ν(dw) ν(dv).

Proof. For the expected number of Poissonized vertices, we apply the tower property and Fubini’s

theorem to get

E
(
|V ′t |

)
= E


E


∑

i

1(D′t,i > 0)

∣∣∣∣∣W





 = E


∑

i

1− P
(
Dt,i = 0 |W

)

 .
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Using the fact that D′t,i|W is Poisson-distributed,

E
(
|V ′t |

)
= E


∑

i

1− exp (−tui)


 = E



∑

w∈W
1− exp


−tw

∑

v∈W\{w}

v





 .

Finally, by the Slivnyak-Mecke theorem and Campbell’s theorem,

E
(
|V ′t |

)
=

∫
E


1− exp


−tw

∑

v∈W
v





 ν(dw)

=

∫ [
1− exp

(∫
(e−twv − 1) ν(dv)

)]
ν(dw).

For the expected number of Poissonized edges, after applying Fubini’s theorem and Slivnyak-Mecke

we have

E
(
|E′t|

)
= E


1

2

∑

i

D′t,i


 = E


1

2

∑

i

E
(
D′t,i|W

)



= E


1

2

∑

i

ui


 = E


1

2

∑

w∈W,v∈W\{w}

wv




=
1

2

∫ ∫
wv ν(dw) ν(dv).

For the expected number of Poissonized edges in the binary case, noting that |Πij ∩ [0, t]| is

Poisson-distributed with rate twiwj , and applying Fubini’s theorem and Slivnyak-Mecke, we have:

E(|Ē′t|) = E


E


∑

i

D̄′t,i|W





 = E


 ∑

w∈W,v∈W\{w}

(1− exp(−twv))




=

∫ ∫
(1− exp(−twv)) ν(dw) ν(dv).
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C.4.3 Asymptotics

We have defined the expected number of vertices and edges for the multigraph and binary graph

cases (Lemma 4.5.2) and presented the Poissonized version of these expectations (Lemma C.4.2).

We now show in Lemma C.4.3 that the expected graph quantities and their Poissonized expectations

are asymptotically equivalent.

Lemma C.4.3. The Poissonized expectations for the number of vertices and the number of edges

in the multi- and binary graphs are asymptotically equivalent to the original expectations; i.e., as

n→∞,

E
(
|V ′n|

)
∼ E

(
|Vn|

)
,

E
(
|E′n|

)
∼ E

(
|En|

)
,

E
(
|Ē′n|

)
∼ E

(
|Ēn|

)
.

Proof. For the vertices, we have

E
(
|Vn| − |V ′n|

)
=

∫ [
exp

(
−
∫

(1− e−nwv) ν(dv)
)
− exp

(
−
∫

(1− (1− wv)n) ν(dv)
)]
ν(dw).

Using the elementary inequalities

0 ≤ e−nx − (1− x)n ≤ nx2e−nx, x ∈ [0, 1], n > 0

0 ≤ e−a − e−b ≤ b− a, 0 ≤ a ≤ b,

we have

0 ≤ E
(
|Vn| − |V ′n|

)
≤
∫∫

n(wv)2e−nwv ν(dv) ν(dw). (C.2)
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Finally, note that

∀n > 0,∀w, v ∈ [0, 1], nwve−nwv ≤ e−1

and

∫∫
e−1wv ν(dw) ν(dv) = e−1

(∫
w ν(dw)

)2

<∞.

Therefore by Lebesgue dominated convergence,

0 ≤ lim
n→∞

E
(
|Vn| − |V ′n|

)
≤
∫∫

lim
n→∞

n(wv)2e−nwv ν(dv) ν(dw) = 0,

so we have that limn→∞ E
(
|Vn| − |V ′n|

)
= 0. Since E(|Vn|), E(|V ′n|) are monotonically increasing by

inspection, E(|Vn|) ∼ E(|V ′n|), n→∞, as required.

For the binary graph edges,

E
(
|Ēn| − |Ē′n|

)
=

1

2

∫∫
(exp(−nwv)− (1− wv)n) ν(dv) ν(dw).

Using the earlier elementary inequalities,

0 ≤ E
(
|Ēn| − |Ē′n|

)
=

1

2

∫∫
n(wv)2e−nwv ν(dv) ν(dw).

This is (modulo the constant factor of 1/2) the exact expression in Equation (C.2). Therefore, the

same analysis can be performed, and the result holds.

For multigraph edges,

E
(
|En| − |E′n|

)
=
n

2

∫∫
(wv − wv) ν(dv) ν(dw) = 0,

so E
(
|En|

)
∼ E

(
|E′n|

)
, n→∞.
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Lemma C.4.3 allows us to analyze the asymptotics of the Poissonized expectations and apply the

result directly to the asymptotics of the original graph quantities. To achieve the desired asymptotics

for the Poissonized expectations, we will make a further assumption on the rate measure ν generating

the vertex weights in Equation (4.2). Namely, we assume that the tails of ν decay at a rate that

will yield the appropriate weight decay in the weights (wj)—and thereby the appropriate decay in

vertex creation to finally yield sparsity in the graph itself. In particular, the tail of a measure ν is

said to be regularly varying if there exists a function ` : R+ → R+ and α ∈ (0, 1) such that

∫ 1

x

ν(dw) ∼ x−α`(x−1), x→ 0, ∀ c > 0, lim
x→∞

`(cx)

`(x)
= 1. (C.3)

The condition on the function ` is equivalent to saying that ` is slowly varying. For additional details

on regular and slow variation, see Feller (1971, VIII.8). An important equivalent formulation of

Equation (C.3) that we will use in our following proof of the asymptotics of Poissonized expectations

is provided by Lemma C.4.4 (see Gnedin et al. (2007, Prop. 13) and Broderick et al. (2012, Prop. 6.1)

for the proof).

Lemma C.4.4 (Broderick et al. (2012); Gnedin et al. (2007)). The tail of ν is regularly varying iff

there exists a function ` : R+ → R+ and α ∈ (0, 1) such that

∫ x

0

uν(du) ∼ x1−α`(x−1), x→ 0, ∀ c > 0, lim
x→∞

`(cx)

`(x)
= 1. (C.4)

Lemma C.4.4 is often easier to use than Equation (C.3) when checking whether a particular

measure ν has a regularly varying tail. For example, for the three-parameter beta process, we have

∫ x

0

uν(du) = γ
Γ(1 + β)

Γ(1− α)Γ(β + α)

∫ x

0

u−α(1− u)β+α−1du

∼ γ Γ(1 + β)

Γ(1− α)Γ(β + α)

∫ x

0

u−αdu, x ↓ 0

= γ
Γ(1 + β)

Γ(1− α)Γ(β + α)

1

1− αx
1−α,

so the tail of ν is regularly varying when the discount parameter α satisfies α ∈ (0, 1) with `(x−1)
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equal to the constant function

`(x−1) =
γ

1− α
Γ(1 + β)

Γ(1− α)Γ(β + α)
. (C.5)

Note that the two-parameter beta process does not exhibit this behavior (since in this case, α = 0).

Given the two formulations of a measure ν with a regularly varying tail above, we are ready to

characterize the asymptotics of the earlier Poissonized expectations.

Lemma C.4.5. If the tail of ν is regularly varying as per Equation (C.3), then as n→∞,

E
(
|V ′n|

)
= Θ(nα`(n)), E

(
|E′n|

)
= Θ(n), E

(
|Ē′n|

)
= O

(
`(
√
n) min

(
n

1+α
2 , `(n)n

3α
2

))
.

Proof. Throughout this proof we use c to denote a constant; the precise value of c changes but is

immaterial. We also define the tail of ν as ν̄(x) :=
∫ 1

x
ν(dw), for notational brevity. Furthermore,

recall that we assume the rate measure ν satisfies
∫
wν(dw) <∞.

We first examine the expected number of Poissonized vertices,

E
(
|V ′n|

)
=

∫ [
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw),

by splitting the integral into two parts. First, by the assumption that the tail of ν is regularly

varying,

∫ 1

n−1

[
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw) ≤

∫ 1

n−1

ν(dw) ∼ cnα`(n). (C.6)
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Next, we upper bound the integral term

∫ n−1

0

[
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw) ≤

∫ n−1

0

∫
(1− e−nwv)ν(dv)ν(dw)

≤
∫ n−1

0

∫
nwvν(dv)ν(dw)

≤
(∫

vν(dv)

)
n

∫ n−1

0

wν(dw)

∼ cnα`(n), (C.7)

where the asymptotic behavior in the last line follows from Lemma C.4.4. Thus, combining the

upper bounds on Equation (C.6) and Equation (C.7) gives the bound for the entire integral:

E
(
|V ′n|

)
= O(nα`(n)).

Now we bound the integral below:

∫ 1

n−1

[
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw)

≥
∫ 1

n−1

[
1− exp

(
−
∫

(1− e−v)ν(dv)

)]
ν(dw)

=

(∫ 1

n−1

ν(dw)

)(
1− exp

(
−
∫

(1− e−v)ν(dv)

))

∼ cnα`(n),

where the last line follows from the assumption that the tail of ν is regularly varying. The

second piece of the integral on [0, n−1] is bounded below by 0, and in combination, we have

that nα`(n) = O
(
E
(
|V ′n|

))
. Now combining this with the previous upper bound result, we have

E
(
|V ′n|

)
= Θ(nα`(n)).

The expected number of Poissonized multigraph edges satisfies E
(
E′n
)

= Θ(n), since

E(|E′n|) =
n

2

∫∫
wvν(dw)ν(dv) =

n

2

∫
wν(dw)

∫
vν(dv) =

c2

2
n.
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For the Poissonized binary graph edges, we split the integral into two pieces. We first upper

bound the integral on the interval [0, n−1/2] and apply Definition C.4.4 to get the following asymptotic

behavior:

1

2

∫ n−1/2

0

∫
(1− exp (−nwv)) ν(dw) ν(dv) ≤ 1

2

∫ n−1/2

0

∫
nwv ν(dw) ν(dv)

=
n

2

(∫
wν(dw)

)∫ n−1/2

0

vν(dv)

∼ cn(n−1/2)1−α`(n1/2)

= cn
1+α
2 `(n1/2).

We then bound the second portion on the interval [n−1/2, 1] by linearizing at v = n−1/2. Using

integration by parts and an Abelian theorem (Feller, 1971, Sec. XIII.5, Thm. 4) for the Laplace

transform, for some constants b, d > 0, we have

1

2

∫ 1

n−1/2

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ 1

n−1/2

∫ (
1− exp

(
−n1/2w

)
+ nw exp

(
−n1/2w

)
(v − n−1/2)

)
ν(dw) ν(dv)

=
1

2

(∫ 1

n−1/2

ν(dv)

)∫
n1/2 exp(−n1/2w) ν̄(w) dw

+
1

2

∫ 1

n−1/2

(nv − n1/2) ν(dv)

∫
w exp(−n1/2w) ν(dw)

∼ bnα`2(n1/2) +
1

2

∫ 1

0

v ν(dv)n1/2

∫
n1/2

(
exp(−n1/2w)− n1/2w exp

(
−n1/2w

))
ν̄(w) dw

≤ bnα`2(n1/2) +
1

2

∫ 1

0

v ν(dv) n1/2

∫
n1/2 exp(−n1/2w) ν̄(w) dw

∼ bnα`2(n1/2) + dn1/2nα/2`(n1/2)

= O(n
1+α
2 `(n1/2)).

Therefore we have that E
(
|Ē′n|

)
= O(n

1+α
2 `(n1/2)).
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To get the other bound, we split the integral into three pieces. First,

1

2

∫ n−1

0

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ n−1

0

∫
nwv ν(dw) ν(dv)

=
n

2

(∫
w ν(dw)

)∫ n−1

0

v ν(dv)

∼ cn(n−1)1−α`(n) = cnα`(n).

Next, integration by parts yields

1

2

∫ 1

n−1/2

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ 1

n−1/2

∫
(1− exp(−nw)) ν(dw) ν(dv)

=
1

2

(∫ 1

n−1/2

ν(dv)

)∫
n exp(−nw) ν̄(w) dw

∼ c
(
n−1/2

)−α
`(n1/2)nα`(n)

= cn
3α
2 `(n)`(n1/2).

Finally, integration by parts yields the final upper bound

1

2

∫ n−1/2

n−1

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ n−1/2

n−1

∫
(1− exp(−n1/2w)) ν(dw) ν(dv)

=
1

2



∫ n−1/2

n−1

ν(dv)



∫
n1/2 exp

(
−n1/2w

)
ν̄(w) dw

∼
(
c1n

α`(n)− c2n
α
2 `(n1/2)

)(
c3n

α/2`(n1/2)
)

∼ cn 3α
2 `(n)`(n1/2).

Therefore E
(
|Ē′n|

)
= O(`(n)`(n1/2)n

3α
2 ).

139



Finally, we show that |En|, |Ēn|, and |Vn| are asymptotically equivalent to their expectations

almost surely; thus, the asymptotic results for the expectation sequences applies to the random

sequences.

Lemma C.4.6 (4.5.1, main text). The number of edges and vertices for both the multi- and binary

graphs satisfy

|En| a.s.∼ E
(
|En|

)
, |Ēn| a.s.∼ E

(
|Ēn|

)
|V̄n| = |Vn| a.s.∼ E

(
|Vn|

)
, n→∞.

Proof. We use Xn to refer to |En|, |Ēn|, or |Vn|, since the proof technique is the same for all. Since

we need to show Xn/E (Xn)
a.s.→ 1, by the Borel-Cantelli lemma it is sufficient to show that for any

ε > 0,

∑

n

P (
∣∣Xn − E (Xn)

∣∣ > εE (Xn)) <∞.

By the union bound, and the fact that Xn can be expressed as a countable sum of indicators

combined with the note after Theorem 4 in Freedman (1973),

P (
∣∣Xn − E (Xn)

∣∣ > εE (Xn))

≤ P (Xn > (1 + ε)E (Xn)) + P (Xn < (1− ε)E (Xn))

≤ 2 exp

(
−ε

2E (Xn)

2

)
.

Since E(Xn) ≥ nβ for some β > 0, the expression is summable and the result holds.

Combining the results of Lemmas 4.5.1, C.4.3, and C.4.5 gives us the main theorem, which we

state here for completeness.

Theorem C.4.7 (4.5.3, main text). If the tail of ν is regularly varying as per Equation (C.3), then
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as n→∞,

|Vn| a.s.= Θ(nα`(n)), |En| a.s.= Θ(n), |Ēn| a.s.= O

(
`(n1/2) min

(
n

1+α
2 , `(n)n

3α
2

))
.

Remark C.4.8. Finally, to conclude that there exists a class of sparse, edge-exchangeable graphs, we

examine the asymptotics from this result in more detail. In the multigraph case, we see that the number

of vertices increases at the same rate as nα`(n), and the number of edges increases linearly in n. So

|En| grows at the same rate as |Vn|1/α`(n)−1/α. When α ∈ (1/2, 1), the exponent 1/α lies in the range

(1, 2), and thus this parameter range for α results in sparse graph sequences. For binary graphs, the

number of edges |Ēn| grows at a rate that is bounded by `(
√
n) min

{
|Vn|

1+α
2α `(n)−

1+α
2α , |Vn|

3
2 `(n)−

1
2

}
.

Since min
{

1+α
2α , 3

2

}
≤ 3/2 < 2, binary graphs are sparse for any α ∈ (0, 1). Note that `(n) does not

affect the growth rate throughout since it is a slowly-varying function; i.e., for all c > 0, `(cn) ∼ `(n).

For the three-parameter beta process, which we examined in our simulations, the function ` is a

constant function, as in Equation (C.5).

We have shown that edge exchangeability admits sparse graphs by proving the existence of sparse

graph sequences in a wide subclass of graph frequency models: those frequency models with weights

generated from Poisson point processes whose rate measures have power law tails. Notably, we have

shown the existence of a range of sparse and dense behavior in this wide class of graph frequency

models, as desired.
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Appendix D

Supplementary material:

multi-fidelity MCMC

D.1 Additional related work

Approximate Bayesian computation (ABC) is a related class of methods to pseudo-marginal MCMC

for implicit likelihoods. We note that the asymptotic target for ABC is an approximation to the

target density of interest. Prescott and Baker (2020) propose a multi-fidelity approach to ABC. A

number of multilevel ABC approaches (Guha and Tan, 2017; Lester, 2018; Warne et al., 2021) have

also been proposed in recent work.

In our work, the Russian roulette estimator is used to construct an unbiased, low-fidelity likelihood.

The Russian roulette estimator has been used recently in a number of applications for optimization

and inference (Beatson and Adams, 2019; Luo et al., 2020; Potapczynski et al., 2021). In particular,

Potapczynski et al. (2021) apply similar techniques to get an unbiased estimate of the gradient of

the marginal likelihood for Gaussian process regression; this can viewed as an optimization analog

to our approach.
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D.2 Multi-fidelity simulated annealing

To adapt simulated annealing Section 2.3.5 to a multi-fidelity method, we consider energy functions

of fidelity k, denoted by Ek(θ), and the corresponding low-fidelity targets πk(θ) ∝ exp(−Ek(θ)/T ).

To sample from π(θ|K = k), we accept or reject a proposal θ′ based on:

R = exp

(
−Ek(θ′)− Ek(θ)

T

)
.

To sample from π(K|θ), we accept or reject a proposal K ′ based on:

R = exp

(
−EK′(θ)− EK(θ)

T

)(
µ(K ′)

µ(K)

) 1
T

.

D.3 Experiments: additional experiments and method details

In this section, we provide additional details for the methods used in our experiments along with

additional details of the setup of each experiment.

Methods compared We will use the abbreviations SF to denote a single-fidelity algorithm, e.g.,

SF M-H, MF to refer to the pseudo-marginal MF-MCMC method proposed in this work, and TS to

refer to the two-stage M-H algorithm described in Section 2.3.4. The primary sampling algorithms

used to update the state θ|K are Metropolis-Hastings (M-H), (line) slice sampling (SS), and elliptical

slice sampling (ESS).

Target estimator π̂ In our experiments, by default we consider the Russian roulette estimator

with µ = geometric(γ0), unless stated otherwise.

Sampling the fidelity K|θ To sample the fidelity from the conditional target K|θ, we consider

the following random walk M-H move. Here the target is

π(K|θ) ∝ µ(K)π̂K(θ). (D.1)
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To propose a new fidelity, we consider a random walk on the positive integers: flip a fair coin to

determine a new candidate location k∗ = k ± 1, where k is the current value. Then we can compute

the following ratio and decide to accept/reject this candidate value:

R = min

(
1,
µ(k∗)π̂k∗(D)

µ(k)π̂k(D)

)
.

In problems where the estimator may return negative values, we compute the absolute value of the

estimator |π̂|, as summarized in Algorithm 5.3.1.

D.3.1 Toy conjugate sequence

In this example, we consider a toy conjugate Bayesian model, where the data are assumed to arise

i.i.d. from a perfect-fidelity model L∞(θ) = N (x; θ, σ∞), and a conjugate prior on θ, N (θ|0, 1);

conjugacy leads to a closed form Gaussian posterior density that we can compute and compare to

the posterior samples obtained from the methods that we compare. Thus, the perfect-fidelity target

is π∞(θ) ∝ N (θ|0, 1)
∏N
n=1N (Xn; θ, σ∞).

Now suppose that we only have access to the sequence of low-fidelity models Lk(θ) = N (x; θ, σk),

where σ2
k → σ2

∞. Here we consider the sequence σ2
k = 1 + 2/k2 and σ2

∞ = 1. In this example, we

consider the performance of (1) SF M-H, MF M-H, and two-stage M-H, and (2) SF slice sampling

and slice sampling (there is not an analogous two-stage MCMC algorithm for slice sampling). We

generate N = 200 observations D|θ0 from the perfect-fidelity likelihood with true mean θ0 ∼ N (0, 1).

To compute the “cost” of a likelihood evaluation, we pretend that the likelihood evaluation Lk has

cost k. This is to demonstrate the cost of the method for problems where the cost of an evaluation

increases linearly with k.

In what follows, we first compare the low-fidelity estimators, and then we compare the sampling

methods on one choice of estimator.

Comparing SF-MCMC, MF-MCMC, and two-stage M-H We also compare to the two-

stage M-H algorithm summarized in Section 2.3.4; here we consider 2 two-stage setups of k =
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{1000, 10} and k = {100, 5}. For all methods, we ran 4 chains initialized from the prior with

T = 10000 iterations. We discarded 2000 burn-in samples and the subsequently collected every other

sample.

D.3.2 Log Gaussian Cox Process

In this section, we provide details for the LGCP experiment on the coal mining disasters data set.

We approximate the integral in Equation (5.10) with a trapezoidal quadrature rule Ik: i.e., given

k points x̃1, . . . , x̃k ∈ X and observed points {X1, . . . , XN}, the low-fidelity likelihood is:

Lk(f) = exp
(
Ik(f(x̃1), . . . , f(x̃K))

) N∏

n=1

ef(Xn), (D.2)

where Ik is a trapezoid quadrature rule with 2k + c quadrature points and c is a constant offset

parameter. When computing Lk for a grid of values different than the vector of latent function

values currently available, we draw new function values conditioned on the existing values of f .

For all samplers, we used a squared-exponential kernel with lengthscale ` = 20 and variance of 1.

For the low-fidelity estimator L̂k, we used a Russian roulette estimator and set the offset c = 10.

The truncation parameter of the MF model was fixed at γ0 = 0.08. The results in the rightmost

figure in Figure 5.5.2 are computed with respect to an average over 3 chains initialized from the prior

with T = 10000 samples. The estimates with MF-ESS in Figure 5.5.2 were adjusted for negative

signs; empirically, we observed roughly 2.5% of negative signs in our experiments.

D.3.3 Bayesian ODE system identification

Given a set of parameters θ and initial conditions, we can solve the ODE at a fidelity k to obtain

the solution z(k)
n . Thus, the likelihood of fidelity k is given by:

Lk(θ) =

N∏

n=1

2∏

j=1

LogNormal(log(z
(k)
n,j(θ)), σ), (D.3)

145



where k represents the fidelity of the ODE solver for obtaining the solution zn(θ). We use the

following priors on the parameters

(logα, log β, log γ, log δ) ∼ N (θ0, σ0I), θ0 = [0,−2, 0,−3]>, σ0 = 0.1. (D.4)

In order to apply elliptical slice sampling, which requires the prior to have mean 0, we apply a

change of variables: define Lk(θ̄) = Lk(θ+θ0), and then transform the sampled values θ(t) = θ̄(t) +θ0.

In our experiments, we first verified the sampler was recovering values on synthetic data generated

with initial conditions z0 = [1.0, 1.0], system parameters α = 1.5, β = 1.0, γ = 3.0, δ = 1.0, and noise

parameter σ = 0.8 at a grid of N solution values.

We then applied the method to the Hudson’s Bay Lynx-Hare data set, which documents the

canadian lynx and showshoe hare populations between 1900 and 1920, based on the data collefted

by the Hudson’s Bay company. We compared two single-fidelity models with ODE step size

dt = 1× 10−5, 1× 10−4. For the multi-fidelity ESS sampler, we visualize the results of γ0 = 0.12,

and the step size for the low-fidelity target sequence was computed as dt(k) = 1/(sk + c), where we

set s = 10 and c = 50.

The results using Euler’s method to solve the ODE are in Figure 5.5.3, and the results of the

4th-order Runge Kutta solver are in Figure D.3.1. The maximum number of iterations of each ODE

solver was set to 1× 108 iterations.

In the top row of each figure, the black vertical dotted line denotes maximum likelihood estimates

reported by Howard (2009).1 In the bottom row of each figure, we report the posterior mean

estimates of the system parameters averaged over 4 chains initialized from the prior. The wallclock

time in seconds of each iteration was measured and the average per iteration was reported. Here the

first 5000 samples of each chain were discarded and then every third sample was collected. Overall,

we observe that the single-fidelity models can both be quite expensive; while they are able to recover

the posterior mean well, they require quite a bit more computation than the multi-fidelity approach.
1Our model is a modification of the one proposed in a Stan case study, which compares their Bayesian esti-

mates to the reported maximum likelihood results. See https://mc-stan.org/users/documentation/case-studies/
lotka-volterra-predator-prey.html for further discussion.
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Empirically, we observed roughly 1% of negative signs in our experiments.

D.3.4 PDE-constrained optimization

In the problem setting, the spatial domain is [0, L] and the time domain is [0, T ]. For our experiments,

we chose L = 10 and T = 1.

To solve the PDE, we discretize the spatial domain into a grid of size ∆x: thus, we can

consider points x1, . . . , xI and u1(t), . . . , uI(t), where ui(t) = u(xi, t). Then, we represent the second

derivative using the central difference formula for the second degree derivative:

∂2u(x, t)

∂2x
≈
[
ui+1(t)− 2ui(t) + ui−1(t)

∆x2

]I

i=1

.

Thus, we now consider the system of equations (with the appropriate boundary conditions imposed):

ui+1(t)− 2ui(t) + ui−1(t)

∆x2
=
dui(t)

dt
.

We solve the system with the Tsitouras 5/4 Runge-Kutta method, setting ∆t = 0.4∆x2 so as to

satisfy a CFL stability condition. Here the fidelity of the problem is given by the size of the spatial

discretization ∆x, which in turn controls the discretization of ∆t.

The target temperature ū was constructed by solving the PDE with parameters α0 = 0.85 and

β0 = 0.21. For the simulated annealing algorithm, we use a Metropolis-Hastings algorithm as the

base sampler; all methods used a truncated Normal proposal with scale set to 0.3 and a logarithmic

temperature schedule.

In the top row of Figure 5.5.4, we visualization the target ū solutions recovered by a number of

methods. The low-fidelity solution in target (c) is given by a crude step size of ∆x = 2; note that

we do not evaluate the cost of this given how poorly the solution is recovered at this state.

In the bottom row of Figure 5.5.4, we compare the MF-ESS approach with two single-fidelity

step sizes, ∆x = 5× 10−3, 1× 10−2. In the multi-fidelity method, the low-fidelity target sequence

was chosen using the discretization sequence ∆x(k) = 1/(k + c), where c = 8. The results are
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(a) Marginal densities of system parameters

(b) Posterior mean estimate vs computational cost

Figure D.3.1: Lotka-Volterra system parameter identification with a 4th-order Runge Kutta ODE
solver. The fidelity represents (a function of) the step size of the ODE solver. Top: Marginal
distributions of system parameters. Bottom: Posterior mean estimates of the parameters vs wallclock.
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averaged over random seeds using the initialization [0, 0]. The horizontal dotted lines in each plot

denote the values of α0, β0, and we plot the current minimum at each iteration.

D.3.5 Gaussian process regression parameter inference

In many applications of GPs, the goal is to integrate out the parameters θ via a Monte Carlo

approximation that uses MCMC to sample {θ(t)} from the target density

π∞(θ | D = (X, y)) ∝ π(θ)L∞(θ) = logNormal(θ | ν0, ν1)×N (y | 0,Σθ + σ2
0I). (D.5)

Note that the Gaussian pdf has the form

L∞(θ) = |2π(Σθ + σ2
0I)|− 1

2 exp

(
−1

2
y>(Σθ + σ2

0I)−1y

)
, (D.6)

and so when N is large, the linear system and determinant above become expensive.

Let the low-fidelity likelihood Lk(θ) denote the computation of the likelihood with k iterations

of (preconditioned) conjugate gradient. That is, suppose, z(k) is the kth iteration of the CG with

respect to the linear system (Σθ + σ2
0I)z = y. Thus, the low-fidelity likelihood is

Lk(θ) = |2π(Σθ + σ2
0I)|− 1

2 exp

(
−1

2
y>z(k)

)
.

In practice, the determinant also needs to be approximated with another low-fidelity computation.

Our goal here is to show a proof of concept, and so we only consider the linear system above; however,

we note that the determinant can be iteratively computed as a byproduct of conjugate gradient as

in Potapczynski et al. (2021). Note that we can compute the likelihood recursively in that each z(k)

reuses computation from the previous step z(k−1), and thus a Russian roulette estimator also can

reuse computation for each term in the sum.

We generate synthetic data from the GP model with N = 100, σ2
0 = 1, and lengthscale θ0 = 45.

For the GP model, we use the Log Normal prior on θ given above in Equation (D.5) with parameters

ν0 = 3.8, ν1 = 0.03. We compare several likelihoods: a high-fidelity likelihood (K = 100), low-fidelity
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likelihood (K = 5), and the multi-fidelity approach we describe with γ0 = 0.1. The low-fidelity

likelihood sequence was constructed by computing the solution to the linear system using a conjugate

gradient solver with k steps. Finally, we also compare to a two-stage M-H approach with k ∈ {100, 5}.

For all methods, we use a M-H sampler with T = 50000 iterations. The results are in Figure 5.5.5.
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