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Abstract

Black-box variational inference (BBVI) scales
poorly to high-dimensional problems when it
is used to estimate a multivariate Gaussian
approximation with a full covariance matrix.
In this paper, we extend the batch-and-match
(BaM) framework for score-based BBVI to
problems where it is prohibitively expensive
to store such covariance matrices, let alone to
estimate them. Unlike classical algorithms for
BBVI, which use stochastic gradient descent
to minimize the reverse Kullback-Leibler di-
vergence, BaM uses more specialized updates
to match the scores of the target density and
its Gaussian approximation. We extend the
updates for BaM by integrating them with a
more compact parameterization of full covari-
ance matrices. In particular, borrowing ideas
from factor analysis, we add an extra step to
each iteration of BaM—a patch—that projects
each newly updated covariance matrix into
a more efficiently parameterized family of di-
agonal plus low rank matrices. We evaluate
this approach on a variety of synthetic tar-
get distributions and real-world problems in
high-dimensional inference.

1 Introduction

Many statistical analyses can be formulated as prob-
lems in Bayesian inference. In this formulation, the
goal is to compute the posterior distribution over latent
random variables from observed ones. But difficulties
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arise when the latent space is of very high dimension-
ality, D. In this case, even if the underlying models
are simple—e.g., Gaussian—it can be prohibitively ex-
pensive to store let alone estimate a D ×D covariance
matrix.

These difficulties are further compounded when the un-
derlying models are not Gaussian. In this case, though,
a multivariate Gaussian can sometimes be used to ap-
proximate a posterior distribution that is otherwise
intractable. This idea is the basis of variational in-
ference (VI) (Jordan et al., 1999; Wainwright et al.,
2008; Blei et al., 2017), which in this setting seeks the
Gaussian approximation with the lowest divergence
to the posterior. There are well-developed software
packages to compute these approximations that make
very few assumptions about the form of the posterior
distribution; hence this approach is known as black-box
variational inference (BBVI) (Ranganath et al., 2014;
Kingma and Welling, 2014; Titsias and Lázaro-Gredilla,
2014; Kucukelbir et al., 2017). BBVI, however, also
scales poorly to high-dimensional problems when it is
used to estimate a multivariate Gaussian approxima-
tion with a full covariance matrix (Ko et al., 2024).

One hopeful approach is to parameterize a large co-
variance matrix as the sum of a diagonal matrix and
a low-rank matrix. This idea is used in maximum
likelihood models for factor analysis, where the diag-
onal and low-rank matrices can be estimated by an
Expectation-Maximization (EM) algorithm (Rubin and
Thayer, 1982; Ghahramani and Hinton, 1996; Saul and
Rahim, 2000). This parameterization can also be in-
corporated into BBVI algorithms that use stochastic
gradient methods to minimize the reverse Kullback-
Leibler (KL) divergence; in this case, the required
gradients can be computed automatically by the chain
rule (Miller et al., 2017; Ong et al., 2018). This ap-
proach overcomes the poor scaling with respect to the
dimensionality of the latent space, but it still relies
on the heuristics and hyperparameters of stochastic
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gradient methods. In particular, the optimization itself
does not leverage in any special way the structure of
factored covariance matrices.

In this paper, we extend the batch-and-match (BaM)
framework for score-based BBVI (Cai et al., 2024b) to
these problems. Unlike classical algorithms for BBVI,
BaM does not use gradient descent to minimize a KL
divergence; it is based on more specialized updates to
match the scores of the target density and its Gaussian
approximation. We augment these original updates for
BaM with an additional step—a patch—that projects
each newly updated covariance matrix into a more
efficiently parameterized family of diagonal plus low
rank matrices. This patch is closely based on the EM
updates for maximum likelihood factor analysis, and
the resulting algorithm scales much better to problems
of high dimensionality. We refer to this variant of the
algorithm as patched batch-and-match (pBaM)1.

The organization of this paper is as follows. In Sec-
tion 2, we review the basic ideas of BBVI and BaM. In
Section 3, we derive the patch for BaM with structured
covariance matrices. In Section 4, we summarize re-
lated work on these ideas. In Section 5, we evaluate the
pBaM algorithm on a variety of synthetic target distri-
butions and real-world problems in high-dimensional
inference. Finally, in Section 6, we conclude and discuss
directions for future work.

2 Score-based variational inference

In this section, we provide a brief review of BBVI,
score-based VI, and the BaM algorithm for score-based
BBVI with multivariate Gaussian approximations.

2.1 Black-box variational inference

The goal of VI is to approximate an intractable target
density p by its closest match q in a variational family Q.
The goal of BBVI is to compute this approximation in
a general way that makes very few assumptions about
the target p. Typically, BBVI assumes only that it is
possible to evaluate the score of p (i.e., ∇z log p(z)) at
any point z in the latent space.

As originally formulated, BBVI attempts to find the
best approximation q ∈Q by minimizing the reverse
KL divergence, KL(q||p), or equivalently by maximiz-
ing the evidence lower bound (ELBO). One popular
approach for ELBO maximization is the automatic dif-
ferentiation framework for variational inference (ADVI),
which is based on stochastic gradient-based optimiza-
tion. ADVI (Kucukelbir et al., 2017), which uses the

1A Python implementation of pBaM is available at
https://github.com/modichirag/GSM-VI/.

reparameterization trick to cast the gradient of the
ELBO as an expectation, constructs a stochastic es-
timate of this gradient. The main strength of this
approach is its generality: it can be used with any
variational family that lends itself to reparameteriza-
tion. But this generality also comes at a cost: the
approach may converge very slowly for richer families
of variational approximations—including, in particular,
the family of multivariate Gaussian densities with full
(dense) covariance matrices.

2.2 Score-based approaches to BBVI

Recently, several algorithms have been proposed for
BBVI that aim to match the scores of the target den-
sity and its variational approximation (Yang et al.,
2019; Zhang et al., 2018; Modi et al., 2023; Cai et al.,
2024b,a). Some of these score-based approaches are spe-
cially tailored to Gaussian variational families (Modi
et al., 2023; Cai et al., 2024b), and they exploit the
particular structure of Gaussian distributions to derive
more specialized updates for score-matching.

These approaches find the best Gaussian approximation
by minimizing a weighted score-based divergence:

D(q; p) :=

∫
∥∇ log q(z)−∇ log p(z)∥2Cov(q) q(z) dz,

(2.1)

where ∥x∥Σ :=
√
x⊤Σx and q is assumed to belong to

the variational family Q := {N (µ,Σ):µ∈RD,Σ∈SD++}
of multivariate Gaussian distributions.

One of these approaches is the batch-and-match
(BaM) algorithm for score-based VI. BaM uses a KL-
regularized proximal point update to optimize the
above divergence. BaM avoids certain heuristics of
gradient-based optimization because its proximal point
update can be solved in closed form. The BaM up-
dates reduce as a special case to an earlier algorithm
for Gaussian score matching (Modi et al., 2023); the
latter is equivalent to BaM with a batch size of one
and an infinite learning rate. Notably, both of these
approaches have been empirically observed to converge
faster than ADVI with a full covariance. The “patch”
step in this paper can be applied both to Gaussian
score matching and BaM, but we focus on the latter
because it contains the former as a special case.

2.3 Batch-and-match variational inference

We now review the BaM framework for BBVI in more
detail. BaM iteratively updates its variational parame-
ters by minimizing an objective with two terms: one is a
score-based divergence between q and p, estimated from
a batch of B samples, while the other is a regularizer

https://github.com/modichirag/GSM-VI/
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that penalizes overly aggressive updates. Specifically,
the update is given by

qt+1 = argmin
q∈Q

D̂qt(q; p) +
2
λt

KL(qt; q), (2.2)

where D̂qt(q; p) is a stochastic estimate of the score-
based divergence in Eq. 2.1 based on B samples {zb ∼
qt}Bb=1. We compute this stochastic estimate as

D̂qt(q; p) :=

B∑
b=1

∥∥∇ log q(zb)−∇ log p(zb)
∥∥2

Cov(q).

(2.3)

Note also that the prefactor of the KL regularizer in
Eq. 2.2 contains a learning rate parameter λt > 0.

The optimization in Eq. 2.2 has a closed-form solu-
tion, and this solution forms the basis for BaM. Each
iteration of BaM alternates between a batch step and
a match step. The batch step collects B samples
{zb ∼ qt}Bb=1, evaluates their scores gb := ∇ log p(zb),
and then computes the following statistics:

z = 1
B

B∑
b=1

zb, C = 1
B

B∑
b=1

(zb − z)(zb − z)⊤ (2.4)

g = 1
B

B∑
b=1

gb, Γ = 1
B

B∑
b=1

(gb − g)(gb − g)⊤. (2.5)

Finally, the batch step uses these statistics to compute
the empirical score-based divergence D̂qt(q; p) in Eq. 2.3.
We note for future reference that the matrices C and Γ
in these statistics are constructed as the sum of B
rank-1 matrices; thus the ranks of C and Γ are less
than or equal to the batch size B.

The match step of BAM computes updated variational
parameters Σt+1 and µt+1 that minimize the score-
matching objective in Eq. 2.3. In what follows we
present the updates for B<D, which is the relevant
regime for high-dimensional problems. We begin by
introducing two intermediate matrices U and V , de-
fined as

U := λtΓ + λt

1+λt
g g⊤ (2.6)

V := Σt + λtC + λt

1+λt
(µt − z)(µt − z)⊤. (2.7)

In fact, it is not necessary to store the dense D ×D
matrix U ; it suffices to work with any tall and thin
matrix Q∈RD×(B+1) satisfying

U = QQ⊤. (2.8)

One solution for Q satisfying the above can be imme-
diately deduced from the expressions for Γ and U in

Eqs. 2.5 and 2.6; in particular, it is obtained by con-
catenating the mean and centered scores of the batch:

Q =

[√
1
B (g1−g), . . . ,

√
1
B (gB−g),

√
λt

1+λt
g

]
.

(2.9)
Finally, in terms of these matrices, BaM updates the
covariance as

Σt+1=V−V ⊤Q
[
1
2I+

(
Q⊤V Q+ 1

4I
) 1

2
]−2

Q⊤V, (2.10)

where the thinness of Q helps to perform this update
more efficiently. After this covariance update, BaM
updates the mean as

µt+1 = 1
1+λt

µt +
λt

1+λt
(Σt+1 g + z) , (2.11)

where Σt+1 is the update in Eq. 2.10. The new param-
eters Σt+1 and µt+1 from these updates in turn define
the new variational approximation qt+1.

BaM differs from previous approaches to BBVI that
optimize a KL-based objective using gradient descent.
Gradient-based approaches rely at each iteration on
an implicit linearization of the objective function that
they are trying to optimize. By contrast, each BaM
iteration constructs a proximal-point objective function
whose global optimum can be computed in closed form
and without resorting to an implicit linearization.

Finally, we note that the BaM update in Eq. 2.10
takes O(D2B +B3) computation for dense covariance
matrices Σt. Since this update scales quadratically
in D, it may be too expensive to compute for very high
dimensional problems. (In fact, it may even be too
expensive to store the covariance matrix Σt.) In the
next section, we introduce a patch at each iteration of
BaM to avoid this quadratic scaling.

3 The patch: a low-rank plus diagonal
covariance matrix

In this section, we consider how BaM can be adapted
to a Gaussian variational family whose covariance ma-
trices Σ are parameterized as the sum of a low-rank
matrix and a diagonal matrix: namely,

Σ = ΛΛ⊤ +Ψ. (3.1)

In this parameterization, Λ is a D×K matrix with
rank K≪D, and Ψ is a D×D diagonal matrix. For
Gaussian distributions whose covariance matrices are
of this form, we can evaluate the log-density with O(D)
computation using the Woodbury matrix identity. We
can also generate samples efficiently as follows (Miller
et al., 2017; Ong et al., 2018):

ε ∼ N (0, ID), ζ ∼ N (0, IK), z = µ+ Λζ +
√
Ψε.
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Algorithm 1 Batch, match, and patch BBVI
1: Input: Iterations T , batch size B, inverse regular-

ization λt>0, target score function s : RD → RD,
initial variational mean µ0∈RD and covariance matrix
Σ0 = Ψ0 + Λ0Λ

⊤
0 .

2: for t = 0, . . . , T−1 do
3: Sample batch zb ∼ N (µt,Ψt+ΛtΛt) for b=1, . . . , B
4: Evaluate scores gb = s(zb) for b = 1, . . . , B
5: Compute the batch mean statistics z, g∈RD given by

z = 1
B

B∑
b=1

zb and g = 1
B

B∑
b=1

gb.

6: Compute the intermediate matrices

Q=

[√
1
B
(g1−g), . . . ,

√
1
B
(gB−g),

√
λt

1+λt
g

]
,

R=

[√
λt
B
(z1−z̄), ...,

√
λt
B
(zB−z̄),

√
λt

1+λt
(µt−z),Λt

]
,

V =Ψt +RR⊤.

7: Update variational parameters (“match” and “patch”)

Σt+ 1
2
= V −V ⊤Q

[
1
2
I+

(
Q⊤V Q+ 1

4
I
) 1

2

]−2

Q⊤V,

Σt+1 = Patch
[
Σt+ 1

2

]
µt+1 = 1

1+λt
µt +

λt
1+λt

(Σt+1 g + z)

8: end for
9: Output: mean µT and covariance parameters ΨT ,ΛT

Our goal is to derive an algorithm for score-based
VI with this variational family whose computational
cost and memory also scale linearly in D. To do so,
we introduce a patch step that projects the covariance
update in Eq. 2.10 into one that has the form of Eq. 3.1.

The new algorithm is shown in Algorithm 1. Intuitively,
at each iteration, we use Σt+ 1

2
to denote the interme-

diate update of the unconstrained covariance matrix
computed by Eq. 2.10, and then we apply a patch that
projects Σt+ 1

2
to a low-rank plus diagonal matrix,

Σt+1 = Patch
[
Σt+ 1

2

]
(3.2)

such that the updated covariance matrix is still of
the form in Eq. 3.1, i.e. Σt+1 = Λt+1Λ

⊤
t+1 + Ψt+1.

Note that we perform this patch without constructing
the Σt+1 matrix explicitly, but only by estimating the
parameters Λt+1 and Ψt+1. We compute this projection
via an Expectation-Maximization (EM) algorithm that
minimizes the KL divergence, KL(qt+ 1

2
||qt+1), with

respect to the parameters (Λt+1,Ψt+1). Here, qt+ 1
2

and qt+1 are the Gaussian distributions with shared
mean µt+1 and covariance matrices Σt+ 1

2
and Σt+1.

The next sections show why a patch is needed at each
iteration to perform this projection, describe how the
projection is performed via an EM algorithm, and
discuss the overall scaling of this new algorithm.

Algorithm 2 Patch step
1: Input: Dense covariance Σt+ 1

2
(represented implicitly

by Ψt, R and Q), initial parameters Λ0,Ψ0, momentum
η, tolerance ε, maximum number of steps N

2: KL0 = log(|Λ0Λ
⊤
0 +Ψ0|) + tr

(
(Λ0Λ

⊤
0 +Ψ0)

−1Σt+ 1
2

)
3: for τ = 0, . . . , N−1 do
4: Compute intermediate matrix of size K ×D

βτ = Λ⊤
τ Ψ

−1
τ [I−Λτ (I + Λ⊤

τ Ψ
−1
τ Λτ )

−1Λ⊤
τ Ψ

−1
τ ]

5: Update low rank and diagonal parameters
Λτ+1 = Σt+ 1

2
β⊤
τ (βτΣt+ 1

2
β⊤
τ + I − βτΛτ )

−1

Ψτ+1 = diag((I − Λτ+1βτ )Σt+ 1
2
)

6: Update parameters with momentum η:
Λτ+1 = (1− η)Λτ + ηΛτ+1

Ψτ+1 = (1− η)Ψτ + ηΨτ+1

7: Compute
KLτ+1 = log(|Λτ+1Λ

⊤
τ+1 +Ψτ+1|)

+ tr
(
(Λτ+1Λ

⊤
τ+1 +Ψτ+1)

−1Σt+ 1
2

)
8: if (KLτ+1/KLτ < 1+ε) then
9: break # Early stopping

10: end if
11: end for
12: Output: Σt+1 (represented implicitly by Λτ+1,Ψτ+1)

3.1 Why add a “patch step”?

In this section, we investigate the update of Eq. 2.10
in detail and show why a patch step is need to scale
linearly in the number of dimensions, D. Recall that
when B ≪ D, the matrix U in Eq. 2.6 of rank at most
B+1 because it is constructed from a sum of B+1
rank-one matrices. Here we note the following: when
Σt is the sum of a diagonal plus low-rank matrix, as
in Eq. 3.1, then the matrix V in Eq. 2.7 can also be
written as the sum of a diagonal plus low-rank matrix.
In particular, we can write

V = Ψt +RR⊤, (3.3)

where the matrix R∈RD×(B+1+K) is constructed by
concatenating the column vectors

R =

[√
λt

B (z1−z̄), ...,
√

λt

B (zB−z̄),
√

λt

1+λt
(µt−z),Λt

]
.

(3.4)
The construction of the tall but thin matrix R in Eq. 3.4
is analogous to the construction of the matrix Q in
Eq. 2.9.

With these definitions, we can now realize certain gains
in efficiency when the number of dimensions, D, is large.
First, note that the covariance update of Eq. 2.10 can
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be written explicitly in terms of R and Q as

Σt+ 1
2
=Ψt+RR⊤−(Ψt+RR⊤)⊤QMQ⊤(Ψt+RR⊤),

(3.5)

where we have introduced M as shorthand for the brack-
eted (B+1)× (B+1) matrix

[
1
2I+

(
Q⊤V Q+ 1

4I
) 1

2
]−2

that appears in Eq. 2.10. Hence the updated covari-
ance matrix Σt+ 1

2
can be implicitly represented by the

matrices Ψt, Q, R, and M , which are respectively of
size D (along the diagonal), D×(B+1), D×(K+B+1),
and (B+1) × (B+1); i.e., the memory cost is O(D).
Second, we note that none of the matrix products in
Eq. 3.5 are between dense high-rank matrices. Hence,
we can also evaluate Eq. 3.5 with a computational cost
that is O(D); this is shown more fully in Appendix A.3.

3.2 Patch: projection via an EM algorithm

To perform the patch in Eq. 3.2, we aim to minimize
the KL divergence KL(qt+ 1

2
||qt+1), with respect to the

parameters (Λ,Ψ), where

qt+ 1
2
= N (µt+1,Σt+ 1

2
), (3.6)

qt+1 = N (µt+1,Σt+1), (3.7)

and Σt+1 = ΛΛ⊤+Ψ. This KL divergence is given by

KL(qt+ 1
2
||qt+1) (3.8)

= 1
2

[
log

(
|ΛΛ⊤+Ψ|
|Σ

t+1
2
|

)
−D+tr

{
(ΛΛ⊤+Ψ)−1Σt+ 1

2

}]
.

Note that the KL divergence is independent of the mean
µt+1, which is the same for both distributions. Hence,
for simplicity, and without loss of generality, we assume
that the mean is zero in the following discussion.

To minimize this objective, we adapt a factor analysis
model, as it allows us to minimize this KL divergence by
defining and minimizing a simpler auxiliary function.
Indeed, the update we consider is the infinite data limit
of the EM algorithm for factor analysis (Rubin and
Thayer, 1982; Ghahramani and Hinton, 1996; Saul and
Rahim, 2000).

Let q̃t+ 1
2
(z) = N (z | 0,Σt+ 1

2
). Consider the following

factor analysis model:

ζ ∼ NK(0, I), z | ζ ∼ ND(Λζ,Ψ), (3.9)

where ζ ∈ RK is a hidden variable and K ≪ D, and
the subscript on the Gaussian N (·) denotes the dimen-
sion of the multivariate variable. Then the marginal
distribution qθ(z), where θ = (Λ,Ψ), is Gaussian with
the structured covariance matrix Σ = ΛΛ⊤ +Ψ:

qθ(z) = N (0,ΛΛ⊤ +Ψ). (3.10)

We estimate a factored representation for Σt+ 1
2

by
minimizing the KL divergence between q̃t+ 1

2
and qθ

with respect to θ (which is equivalent to minimizing
Eq. 3.8 with respect to Λ and Ψ).

As is standard in the EM algorithm, we minimize an
auxiliary function that upper bounds the KL divergence.
This auxiliary function is minimized by simple updates
that also monotonically decrease the KL divergence.
The auxiliary function is given by

A(θτ , θ) :=Eq̃
t+1

2

[
−
∫
log(q(ζ, z|θ))q(ζ|z, θτ )dζ

]
.

(3.11)

We show in Appendix A.2 how to minimize this function
with respect to θ, i.e.,

θτ+1=argmin
θ∈Θ

A(θτ , θ), (3.12)

and we also show that this update decreases
KL(q̃t+ 1

2
||qθ) at every iteration.

The EM algorithm takes the following form. In the E-
step, we compute the following statistics (expectations)
of the conditional distribution of the hidden variable ζ
given z:

Eq[ζ] = βτz, Eq[ζζ
⊤] = βτzz

⊤β⊤
τ + I − βτΛτ ,

where βτ := Λ⊤
τ (ΛτΛ

⊤
τ +Ψτ )

−1 is a K×D matrix that
can be computed efficiently via the Woodbury matrix
identity. In the M-step, we optimize the objective in
Eq. 3.11, which becomes

L := 1
2Eq̃

t+1
2

[
z⊤Ψ−1z − 2z⊤Ψ−1ΛEq[ζ] (3.13)

+ tr(Λ⊤Ψ−1ΛEq[ζζ
⊤])

]
+ log |Ψ|

2 + const.

The EM updates are derived by setting ∇ΛL = 0 and
∇ΨL = 0. In this way, we derive the updates

Λτ+1 = Σt+ 1
2
β⊤
τ (βτΣt+ 1

2
β⊤
τ + I − βτΛτ )

−1, (3.14)

Ψτ+1 = diag((I − Λτ+1βτ )Σt+ 1
2
). (3.15)

These steps are summarized in Algorithm 2, and a
complete derivation is provided in Appendix A.1.

3.3 Convergence of the EM updates

To minimize the number of EM steps, Algorithm 2
adds a momentum hyperparameter η to the EM up-
dates (lines 7–8). We also implement early stopping
wherein we monitor the KL divergence (Eq. 3.8) for
every update, and if the relative difference in KL over
successive iterations is less than a threshold value, we
terminate the patch step. We fix this threshold value
to 10−4 for all experiments in this paper. At every
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Figure 3.1: Scaling of pBaM algorithm with dimensions, batch size and rank. The top row shows the timing for
BaM step (without evaluating the scores of the target) and the bottom row shows timing for a single EM step.
All timings are in seconds. We also show linear, quadratic and cubic fits to the data-points.

iteration of pBaM, we initialize Ψ and Λ for the patch
step with their current values. As a result, the con-
vergence is quite fast. Roughly speaking, we find that
convergence requires hundreds of EM updates in the
first couple iterations of pBaM (when the variational
approximation is rapidly evolving), but fewer than 10
EM updates after only a few iterations of BaM. The
average number of EM updates over 10,000 iterations
was fewer than 5 in most of our experiments.

3.4 Scaling of pBaM

Before proceeding to numerical experiments, we study
the scaling of our algorithm in terms of the dimension-
ality D, batch size B, and rank K. Every iteration
of our approach consists of two steps—a BaM update
and the patch step, which is implemented as a series of
EM updates. In Appendix A.3, we show that the BaM
update scales as O(DB2 +B3 +KBD), while the EM
update scales as O(DK2 +K3 +KBD). As desired,
the scaling of both steps is linear in D. We validate
these scalings empirically in Figure 3.1, where we show
the time taken for the BaM update and a single EM
step for increasing dimensionality, batch size, and rank,
varying one of these factors while keeping the others
fixed. For the BaM step, we use a dummy model in
which it takes a negligible time to evaluate scores.

Note that while the EM updates scale similarly as each
BaM step, the former are independent of the target
distribution. On the other hand, for each BaM step, it
is necessary to re-evaluate the scores (i.e., gradients)
of the target distribution. For any physical model of
reasonable complexity, evaluating scores is likely to be
far more expensive than a single iteration of EM.

4 Related work

Structured covariances have been considered in several
variational inference algorithms. In particular, Miller
et al. (2017) and Ong et al. (2018) propose using the
Gaussian family with low rank plus diagonal structured
covariances as a variational family in a BBVI algorithm
based on reparameterization of the ELBO objective.
Tomczak et al. (2020) study the use of low-rank plus
diagonal Gaussians for variational inference in Bayesian
neural networks.

Bhatia et al. (2022) study the problem of fitting a
low-rank plus diagonal Gaussian to a target distribu-
tion; they show that when the target itself is Gaussian,
gradient-based optimization of the (reverse) KL di-
vergence results in a power iteration. However, their
approach restricts the diagonal to be constant.

Alternative families for structured VI have also been
proposed by many researchers (Saul and Jordan, 1995;
Hoffman and Blei, 2015; Tan and Nott, 2018; Ko et al.,
2024). For example, Tan and Nott (2018) use sparse
precision matrices to model conditional independence,
and Ko et al. (2024) use covariance matrices with block
diagonal structure.

5 Experiments

The patched BaM algorithm (pBaM) is implemented in
JAX (Bradbury et al., 2018), and publicly available on
Github. We compare pBaM against factorized and low
rank plus diagonal ADVI (ADVI-D and ADVI-LR re-
spectively) (Miller et al., 2017; Ong et al., 2018), both
of which can scale to high dimensions. For smaller
dimensions, we will also compare against ADVI with

https://github.com/modichirag/GSM-VI/
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full covariance (ADVI-F) and Batch-and-Match (BaM)
with full covariance. For higher dimensional experi-
ments, we omit the full covariance methods due to their
large computational cost. Unless otherwise mentioned,
all experiments are done with batch size B = 32.

pBaM Setup: We set the parameters of the patch
step to default values of η = 1.2 and tolerance t = 10−4.
We experimented with different values and found the
algorithm to be robust in the broad parameter ranges
of 1 < η < 1.5 and t < 10−3. We initialize the learning
rate parameter as λ0 = 1 and decay its value at each
iteration according to the schedule λt = λ0/(1+t).

ADVI Implementation: To implement ADVI we
used automatic differentiation in JAX and the ADAM
optimizer (Kingma and Ba, 2015) to minimize the
reverse KL divergence. In all experiments, we evaluate
performance over a grid of learning rates and only
show the best results. We scheduled the learning rate
to decrease linearly over the course of iterations to a
minimum value of 10−5. We also experimented with
other forms of scheduling, e.g., cosine scheduling, but
did not find significant differences in performance.

We implemented factorized and multivariate normal
distributions in NumPyro. We implemented a more
efficient alternative for Gaussian distributions with
low-rank plus diagonal covariance matrices. This im-
plementation generates samples via the factor analysis
model in Eq. 3.9 and evaluates the log-probability us-
ing the Woodbury matrix identity; the full covariance
matrix is never stored in memory.

5.1 Synthetic Gaussian targets

We begin by considering Gaussian target distributions
with a low-rank plus diagonal covariance:

p(z) = N (z |µ,Ψ+ ΛΛ⊤),

µ ∼ N (0, 1), Ψ ∼ U(0, 1), Λ ∼ N (0, 1), (5.1)

where µ,Ψ∈RD and Λ∈RD×K . Note that this distri-
bution has strong off-diagonal components and the con-
dition number (κ) of this covariance matrix increases
with increasing dimensions, e.g., κ > 106 for D > 2048
and K = 32. We study the performance of pBaM on
this target distribution as a function of the number of
dimensions (D) and rank (K).

5.1.1 Performance with increasing dimensions

We begin by considering the setting where the varia-
tional distribution and the target distribution are in
the same family. In this setting, we show that despite
the patch step, the algorithm converges to match the
target, even in high dimensions.

Figure 5.1 shows the results on Gaussian targets with
increasing numbers of dimensions but fixed rank K=32.
We show results for pBaM and ADVI-LR that fit this
target distribution with variational approximations of
the same rank, K = 32. We monitor the reverse KL
divergence as a function of gradient evaluations. Both
algorithms are able to fit the target distribution, but
pBaM converges much faster. We also show results for
the best two learning rates for ADVI and two different
values of λt for pBaM. While ADVI-LR converges faster
initially with a large learning rate, it gets stuck closer to
the solution even when the learning rate decays with a
linear schedule. On the other hand, BaM performs well
across different learning rates, though though λt = 1 is
more stable than λt = 10 for D=8192.

5.1.2 Performance with increasing ranks

Next we study the performance of pBaM with increas-
ing ranks for the variational approximation. The results
are shown in Figure 5.2. Here we have fixed the target
to be Gaussian (Eq. 5.1) with D = 512 and K = 256,
and we fit it with variational approximations of ranks
K = 16, 64, 128 and 256. In the last setting, the vari-
ational approximation and the target again belong to
the same family, and we expect an exact fit.

In the left panel of Figure 5.2, we monitor the re-
verse KL divergence while in the other panels we show
marginal histograms for the first dimension. Again,
we find that while both ADVI-LR and pBaM con-
verge to the same quality of solution, pBaM converges
much faster. When the rank of the variational distribu-
tion is less than the target, the final approximation is
more concentrated (smaller marginal variance). With
increasing rank, the final approximation becomes a
better fit, both in terms of minimizing the reverse KL
and capturing the variance of the target distribution.

5.2 Gaussian process inference

Next we study pBAM for variational inference in Gaus-
sian processes (GPs). Consider a generative model of
the form

f ∼ GP(m, κ̃), y1:N |f iid∼ Pf , (5.2)

where m is a mean function, κ̃ is a kernel function, and
Pf is a distribution that characterizes the likelihood of
a data point. This structure describes many popular
models with intractable posteriors, such as Gaussian
process regression (with e.g., Poisson or Negative Bino-
mial likelihoods), Gaussian process classification, and
many spatial statistics models (e.g., the log-Gaussian
Cox process).

The function f is typically represented as a vector of
function evaluations on a set of D points, and thus
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Figure 5.1: Performance with increasing dimensions for Gaussian with low-rank (K = 32) plus diagonal covariance
as target. We monitor reverse KL divergence for pBaM (blue) and ADVI-LR (orange) with K = 32, and ADVI-D
(green) for two different λt and learning rate respectively (solid vs dashed).

Figure 5.2: Performance with increasing ranks (K) for variational family. Target is 512 dimension Gaussian with
low-rank (K = 256) plus diagonal. We monitor reverse KL divergence for pBaM (solid) and ADVI-LR (dashed),
and show marginal histograms for first dimension.

Figure 5.3: Synthetic GP-Poisson regression, D = 100.
We show the reverse KL (left) and the estimated rate
using the posterior means (right).

can be itself high-dimensional (even if the data are low
dimensional). In all experiments, each method was run
for a fixed number of iterations, and so not all methods
converged using the same computational budget.

Poisson regression. We consider a Poisson regres-
sion problem in D = 100 dimensions, where

p(y1, . . . , yN ; f) =

N∏
n=1

Pois(yn;λn), λn = exp(fn).

Data were generated from this model using a GP with
zero-valued mean function and an RBF kernel with
unit length-scale.

In Figure 5.3, we compare pBaM with ranks K =
8, 16, 32 against the BaM algorithm and ADVI (with
full, rank 32, and diagonal covariances). In the left plot,
we report the reverse KL vs the number of gradient

Figure 5.4: Log Gaussian Cox Process, D = 811. We
plot the reverse KL (left) and the estimated rate (right).

evaluations. Here we observe that the low-rank BaM
algorithms converge almost as quickly as the full-rank
BaM algorithm. We found that even with extensive
tuning of the learning rate, the ADVI algorithms tended
to perform poorly for this model; the full covariance
ADVI algorithm diverges. In the right plot, we show
the true rate function along with the inferred rate
functions (we report the posterior mean from the VI
algorithms). For the BaM/pBaM methods, we found
that increasing the rank results in a better fit.

Log-Gaussian Cox process. Now we consider the
log-Gaussian Cox process (LGCP) (Møller et al., 1998),
which is used to model point process data. One ap-
proach to approximate the log-Gaussian Cox process is
to bin the points and then to consider a Poisson likeli-
hood for the counts in each bin. Specifically, we con-
sider p(y1, . . . , yN ; f) =

∏N
n=1 Pois(yn; exp(f(xn)+m),

where m represents a mean offset.
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We apply this model to a coal mining disasters data
set (Carlin et al., 1992), which contains 191 events of
mining explosions in Britain between March 15, 1851
and March 22, 1962. Following Murray et al. (2010),
we bin the points into 811 bins, and so the latent space
is D = 811 dimensional; in addition, we use an RBF
kernel with a length-scale of 37 and set the mean to
m = log(191/811).

The left panel of Figure 5.4 shows the results of ADVI-
LR, ADVI-D, and pBaM on ranks 8, 16, 32. Here we
report the reverse KL divergence, and we find that
pBaM converges much faster than the ADVI methods.
Notably, the varying ranks for pBaM perform similarly.
The right panel of Figure 5.4 shows the estimated rate
functions using the posterior mean of the variational
inference algorithms; the event data are visualized in
the black rug plot points. The estimated intensity
from pBaM is also much more accurate than ADVI
solutions that use MCMC sampling for this problem
(e.g., Nguyen and Bonilla (2014, Figure 4)).

5.3 IRT model

Given I students and J questions, item response theory
(IRT) models how students answer questions on a test
depending on student ability (αi), question difficulty
(βj), and the discriminative power of the questions (θj)
(Gelman and Hill, 2006). The observations to be mod-
eled are the binary values {yij}, where yij indicates
the correctness of the ith student’s answer to ques-
tion j. Both the mean-centered ability of the student
αi, and the difficulty of questions βj have hierarchical
priors. These terms are combined into a variant of
logistic regression with a multiplicative discrimination
parameter.

We show the results of variational inference for this
model in Figure 5.5. Here I = 20 and J = 100, leading
to dimensionality D = 143. ADVI-LR and ADVI-F
diverged on this model even with tuned learning rates.
Full-rank BAM converges to a better reverse KL diver-
gence than the low-rank pBaM or the factorized ap-
proximation of ADVI-D. However, the two-dimensional
marginals for pBaM look closer to those of BAM than
to those of the factorized approximation.

6 Discussion and future work

We have developed a score-based BBVI algorithm for
high-dimensional problems where the covariance of the
Gaussian variational family is represented as a sum
of a low-rank and diagonal (LR+D) component. Our
method extends the batch-and-match algorithm by
adding a patch step that projects an unconstrained
covariance matrix to one that is structured in this way.

Figure 5.5: We show the reverse KL as well as 2-D
marginals for five randomly selected dimensions for
fitting IRT model with BaM, pBaM for ranks K=8
and 32, and ADVI-D. ADVI-LR and ADVI-F did not
converge for this model.

The computational and storage costs of this algorithm
scale linearly in the dimension D. Empirically, we
find that our algorithm converges faster than ADVI
with LR+D and is more stable on real-world exam-
ples. We provide a Python implementation of pBaM
at https://github.com/modichirag/GSM-VI/.

A number of future directions remain. One is to study
pBaM for other high dimensional problems such as
arise (for instance) in Bayesian neural networks. An-
other is to successively increase the rank of variational
approximation in pBaM after an initial low-rank fit.
Finally, it would also be of interest to consider other
types of structured covariance matrices (e.g., exploiting
sparsity) for scaling score-based VI to high dimensional
distributions.

https://github.com/modichirag/GSM-VI/
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A The patch step: additional details

A.1 Derivation of the patch step update

In this section, we derive the infinite-data-limit EM algorithm for factor analysis in the context of pBaM. In
particular, we consider the model in Eq. 3.9 and the objective in Eq. 3.12.

Recall that q̃t+ 1
2
(z) = N (z | 0,Σt+ 1

2
), where we assume we are given Σt+ 1

2
. As we discuss in Section 3.1, we do

not need to form this matrix explicitly.)

First note that the joint distribution under the model in Eq. 3.9 is[
ζ
z

]
∼ N

([
0
0

]
,

[
I Λ⊤

Λ ΛΛ⊤ +Ψ

])
. (A.1)

Defining β := Λ⊤(ΛΛ⊤ +Ψ)−1, the conditional distribution of ζ|z,Ψ,Λ is Gaussian with mean and covariance

Eq[ζ | z] = Λ⊤(ΛΛ⊤ +Ψ)−1z = βz (A.2)

Covq[ζ | z] = I − Λ⊤(ΛΛ⊤ +Ψ)−1Λ = I − βΛ. (A.3)

In what follows, we denote the conditional expectation with respect to q(ζ | z,Λτ ,Ψτ ) as Eq[·], where τ represents
the current EM iteration number. In the E-step, we compute the following statistics of the conditional distribution
(Eq. A.2 and Eq. A.3) of the hidden variable ζ given z and the current parameters Λτ ,Ψτ :

Eq[ζ] = βτz (A.4)

Eq[ζζ
⊤] = Eq[ζ]Eq[ζ]

⊤ + Covq[ζ] = βτzz
⊤β⊤

τ + I − βτΛτ , (A.5)

where βτ := Λ⊤
τ (ΛτΛ

⊤
τ +Ψτ )

−1.

In the M-step, we maximize the objective in Eq. 3.12. First, we rewrite the objective in terms of the optimization
variables (Λ,Ψ) and constants. The log joint distribution is

log q(ζ, z) = − 1
2 (z − Λζ)⊤Ψ−1(z − Λζ)− log |Ψ|

2 + const.,

and so the objective is

L :=−Eq̃
t+1

2

[Eq[log(q(ζ, z |Λ,Ψ))]] + const., (A.6)

= 1
2Eq̃

t+1
2

[
Eq

[
z⊤Ψ−1z − 2z⊤Ψ−1Λζ + ζ⊤Λ⊤Ψ−1Λζ

]]
+ log |Ψ|

2 + const., (A.7)

= 1
2Eq̃

t+1
2

[
z⊤Ψ−1z−2z⊤Ψ−1ΛEq[ζ]+tr(Λ⊤Ψ−1ΛEq[ζζ

⊤])
]
+ log |Ψ|

2 + const., (A.8)

Assuming we can exchange limits (and thus derivatives) and integration, below, we compute the derivatives with
respect to the optimization parameters. We use the following identities (Petersen and Pedersen, 2008):

∇Ca
⊤Cb = ab⊤ (A.9)

∇Ctr(CAC⊤) = 2CA (A.10)

∇C log(|C|) = C−1 (A.11)

∇Ctr{CB} = B⊤, (A.12)

where we assume above that A = A⊤.

Derivative w.r.t. Λ. Setting the derivative of Eq. A.8 with respect to Λ to 0, i.e.,

∇ΛL = Eq̃
t+1

2

[
Ψ−1zEq[ζ]

⊤ −Ψ−1ΛE[ζζ⊤]
]
= 0, (A.13)
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implies that

Λ∗ = Eq̃
t+1

2

[zEq[ζ]
⊤]

(
Eq̃

t+1
2

Eq[ζζ
⊤]
)−1

(A.14)

= Eq̃
t+1

2

[zz⊤]β⊤
τ (βτEq̃

t+1
2

[zz⊤]β⊤
τ + I − βτΛτ )

−1 (A.15)

= Σt+ 1
2
β⊤
τ (βτΣt+ 1

2
β⊤
τ + I − βτΛτ )

−1, (A.16)

where in the second line we plugged in the statistics from Eq. A.4 (note that the statistics are evaluated with
respect to the current parameters Λτ ,Ψτ ), and in the third line we used Eq̃

t+1
2

[zz⊤] = Σt+ 1
2
.

Derivative w.r.t. Ψ. Taking the derivative w.r.t. Ψ−1 and setting ∇Ψ−1L = 0, i.e.,

1
2Eq̃

t+1
2

[
zz⊤−2ΛEq[ζ]z

⊤+ΛEq[ζζ
⊤]Λ⊤]− 1

2Ψ = 0 (A.17)

results in

Ψ∗ = Eq̃
t+1

2

[
zz⊤ − 2ΛEq[ζ]z

⊤ + ΛEq[ζζ
⊤]Λ⊤] (A.18)

= Eq̃
t+1

2

[zz⊤]− ΛEq̃
t+1

2

[Eq[ζ]z
⊤] (A.19)

= Σt+ 1
2
− ΛβτΣt+ 1

2
(A.20)

= (I − Λβτ )Σt+ 1
2
, (A.21)

where the second line follows from substituting the Λ∗ update into the third term of Eq. A.18.

The final update results from taking the diagonal part of Ψ∗ above. Note that this update depends on the newly
updated Λ∗ term in Eq. A.18 (as opposed to the current Λτ ).

A.2 The patch step updates monotonically improve KL divergence

Suppose we have an auxiliary function that has the following properties:

Property 1: A(θ, θ) = KL(q̃t+ 1
2
, qθ)

Property 2: A(θ, θ′) ≥ KL(q̃t+ 1
2
, qθ′) for all θ′ ∈ Θ.

Then the update

θτ+1 = argmin
θ∈Θ

A(θτ , θ) (A.22)

monotonically decreases KL(q̃t+ 1
2
; q) at each iteration. The property that the KL divergence monotonically

decreases holds because

KL(q̃t+ 1
2
, qθτ ) = A(θτ , θτ ) (A.23)

≥ A(θτ , θτ+1) (A.24)
≥ KL(q̃t+ 1

2
, qθτ+1

), (A.25)

where Eq. A.23 is due to Property 1, Eq. A.24 is by construction from the update, and Eq. A.25 is due to
Property 2.

We now show that an auxiliary function satisfying Property 1 and 2 above exists. In particular, consider

A(θ, θ′) = Eq̃
t+1

2

[
log q̃t+ 1

2
(z)−

∫
log

(
q(ζ,z | θ′)
q(ζ | z,θ)

)
q(ζ | z, θ)dζ

]
, (A.26)

where q(ζ | z, θ) ∝ q(ζ)q(z | ζ, θ) is the conditional distribution of the hidden variable induced by Eq. 3.9.

If θ′ = θ, then Property 1 is satisfied: since log q(ζ,z | θ)
q(ζ | z,θ) = log qθ(z) and

∫
q(ζ | z)dz = 1, this results in

A(θ, θ) = KL(q̃t+ 1
2
, qθ).
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Property 2 can be verified using an application of Jensen’s inequality to the second term of Eq. A.26:

A(θ, θ′) ≥ Eq̃
t+1

2

[
log q̃t+ 1

2
(z)−log

∫ (
q(ζ,z | θ′)
q(ζ | z,θ)

)
q(ζ|z, θ)dζ

]
= Eq̃

t+1
2

[
log q̃t+ 1

2
(z)−log

∫
q(ζ, z | θ′)dζ

]
= KL(q̃t+ 1

2
, qθ′).

Thus, minimizing the function in Eq. A.26 monotonically decreases the KL divergence.

Summary of objective and updates. Combining Eq. A.22 and Eq. A.26 results in the iteration in Eq. 3.12:
i.e.,

θτ+1=argmin
θ∈Θ

Eq̃
t+1

2

[
−
∫

log(q(ζ, z | θ))q(ζ | z, θτ )dζ
]
+const., (A.27)

where the constant represents factors that are independent of θ.

A.3 Computational cost of BaM update and the patch step

We first show that the computational cost of the BaM update with a structured covariance is linear in the
dimension D. Next we discuss the computational cost of the patch step, which in combination with the BaM
update, results in a computational cost linear in D.

Recall from Eq. 3.5 that the covariance can be written as

Σt+ 1
2
= Ψt +RR⊤ − (Ψt +RR⊤)⊤QMQ⊤(Ψt+RR⊤),

where Q ∈ RD×(B+1) and R ∈ RD×(K+B+1), and Ψt is a D-dimensional diagonal matrix.

First consider H := (Ψt +RR⊤)⊤Q, where H ∈ RD×(B+1); this matrix can be constructed with O((K +B)BD)
computation.

Then we store Σt+ 1
2

implicitly by storing the matrices Ψt, R,H and M :

Σt+ 1
2
= Ψt +RR⊤ −HMH⊤, (A.28)

Note that evaluating RR⊤ can be a O(D2) operation, but since we store R, we do not need to explicitly evaluate
it now, and we will be able to contract it with other elements in the patch update to maintain O(D) computation.

The matrix M ∈ R(B+1)×(B+1) defined in the update is:

M :=
[
1
2IB+1+

(
Q⊤(Ψt +RR⊤)Q+ 1

4IB+1

) 1
2
]−2

=
[
1
2IB+1+

(
H⊤Q+ 1

4IB+1

) 1
2
]−2

.

Here evaluating the matrix in the square-root takes O(DB2) computation, and it takes O(B3) to compute the
square root and inverse. Thus, overall, the total computational cost of the BaM update is O(DB2 +B3 +KBD);
that is, it is linear in D.

Next, we turn to the computational cost of the patch step. Every iteration of patch step requires us to compute:

βτ = Λ⊤
τ Ψ

−1
τ [IK−Λτ (I + Λ⊤

τ Ψ
−1
τ Λτ )

−1Λ⊤
τ Ψ

−1
τ ] (via Woodbury inverse identity)

Λτ+1 = Σt+ 1
2
β⊤
τ (βτΣt+ 1

2
β⊤
τ + IK − βτΛτ )

−1,

Ψτ+1 = diag((ID − Λτ+1βτ )Σt+ 1
2
)

Here βτ ∈ RK×D, and evaluating βτ requires forming matrix products that take O(K2D) computation and
inverting a K ×K matrix, which in total takes O(K2D +K3) computation.

Using Eq. A.28, Σt+ 1
2
β⊤
τ can be evaluated in O(DK(K + B)), and hence the Λτ update can be evaluated in

O(DK(K +B) +K3) computation, with a similar complexity for the Ψ-update.
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Figure B.1: Impact of scheduling the learning rate for ADVI-LR.

Figure B.2: Impact of changing the batch size and the learning rate for ADVI-LR.

B Additional experiments

In Table B.1, we provide an overview of the problems studied in this paper.

Table B.1: Summary of problems

Problem Target D

Synthetic Gaussian 512
Synthetic Gaussian 1024
Synthetic Gaussian 2048
Synthetic Gaussian 4096
Synthetic Gaussian 8192

Poisson regression Non-Gaussian 100
Log Gaussian Cox process Non-Gaussian 811

IRT model Non-Gaussian 143

B.1 Impact of hyperparameters on Gaussian example

Here we show the impact of varying choices of parameters like scheduling, learning rate, and batch size for
ADVI-LR and pBaM on the synthetic Gaussian example. We always work in the setting where the rank of the
low-rank component of the target and the variational distribution is the same (K = 32).

Figure B.1 shows the impact of scheduling the learning rate. We consider no scheduling (constant learning rate),
linear and cosine scheduling. We fix the inital and final learning rate to be 0.1 and 10−5 respectively, and batch
size B = 8. All three schedules converge at the same rate initially, however the constant learning rate asymptotes
at a higher loss (KL divergence) once it reaches closer to the solution. Both linear and cosine scheduling give
similar performance. Hence we use linear scheduling for all experiments.

Next in Figure B.2, we study the impact of learning rate and batch size. Broadly, we find that the higher learning
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Figure B.3: Impact of changing the batch size and the learning rate parameter λt for pBaM.

rate converges more quickly initially, but plateaus to a larger loss before decreasing sharply again. Smaller batch
sizes show faster convergence initially, while they plateau at a lower KL divergence. Hence we use batch size
B = 32 for all the experiments. However, the conclusion of this figure along with Figure B.1 suggests that the
relationship with learning rate is more complicated. Given that pBaM seems to outperform all these learning
rates considered nevertheless, we show results for two best learning rates in the main text.

Finally we study the impact of batch size and learning rate parameter λt for pBaM in Figure B.3. Overall,
the algorithm seems to get increasingly more stable for larger batch size, and smaller λt for a given batch size.
However the convergence rate for any stable run seems to broadly be insensitive to these choices.

B.2 Gaussian process inference

Figure B.4: Poisson regression D = 100 with varying learning rates for ADVI

Figure B.5: Poisson regression D = 100. BaM/pBaM with varying ranks.

B.2.1 Poisson regression

In Section 5, we studied a D = 100 Poisson regression problem. First, we show in Figure B.4 the results of the
different ADVI methods on a range of learning rates: 0.001, 0.005, 0.01, 0.02, 0.05. For the final plots, the learning
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rate was set to 0.02. For the full covariance family, we also tried a linear schedule and found similar results. We
also found larger batch sizes to be more stable, and so in all plots for this example, we set B = 50. In Figure B.5
we visualize the results of BaM/pBaM for varying ranks; the estimated mean rates in the right panel of Figure 5.3,
but here we additionally show the uncertainties estimated from the posterior standard deviations.

B.2.2 Log Gaussian Cox process

In this example, the dimension was 811, and so we only ran the variational inference methods with diagonal
and low-rank plus diagonal families. We show in Figure B.6 ADVI for these families, varying the learning rate
on a grid. In Figure B.7, we show the BaM/pBaM estimated mean rate and uncertainty computed using the
variational posterior mean and standard deviation. Overall, the differences in this set of ranks were small.

Figure B.6: LGCP, D = 811. ADVI with varying learning rate.

Figure B.7: LGCP, D = 811. BaM/pBaM with varying ranks.
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